Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 10(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34943149

ABSTRACT

Sulfoxaflor is an insecticide belonging to the recent sulfoximine class, acting as a nicotinic acetylcholine receptor (nAChRs) agonist. There are few studies regarding sulfoxaflor's toxicity to non-target organisms. The present study aimed to investigate the acute and sub-lethal effects of sulfoxaflor on Carcinus maenas by addressing survival, behaviour (feed intake and motricity), and neuromuscular, detoxification and oxidative stress, and energy metabolism biomarkers. Adult male green crabs were exposed to sulfoxaflor for 96 h and an LC50 of 2.88 mg L-1 was estimated. All biomarker endpoints were sampled after three (T3) and seven (T7) days of exposure and behavioural endpoints were addressed at T3 and day six (T6). Sulfoxaflor affected the feed intake and motricity of C. maenas at T6. From the integrated analysis of endpoints, with the increase in concentrations of sulfoxaflor, after seven days, one can notice a lower detoxification capacity (lower GST), higher LPO levels and effects on behaviour (higher motricity effects and lower feed intake). This integrated approach proved to be valuable in understanding the negative impacts of sulfoxaflor on green crabs, while contributing to the knowledge of this pesticide toxicity to non-target coastal invertebrates.

2.
Biology (Basel) ; 10(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34943199

ABSTRACT

Global warming and the subsequent increase in the frequency of temperature anomalies are expected to affect marine and estuarine species' population dynamics, latitudinal distribution, and fitness, allowing non-native opportunistic species to invade and thrive in new geographical areas. Bivalves represent a significant percentage of the benthic biomass in marine ecosystems worldwide, often with commercial interest, while mediating fundamental ecological processes. To understand how these temperature anomalies contribute to the success (or not) of biological invasions, two closely related species, the native Ruditapes decussatus and the introduced R. philippinarum, were exposed to a simulated heat wave. Organisms of both species were exposed to mean summer temperature (~18 °C) for 6 days, followed by 6 days of simulated heat wave conditions (~22 °C). Both species were analysed for key ecological processes such as bioturbation and nutrient generation-which are significant proxies for benthic function and habitat quality-and subcellular biomarkers-oxidative stress and damage, and energetic metabolism. Results showed subcellular responses to heat waves. However, such responses were not expressed at the addressed ecological levels. The subcellular responses to the heat wave in the invasive R. philippinarum pinpoint less damage and higher cellular energy allocation to cope with thermal stress, which may further improve its fitness and thus invasiveness behaviour.

3.
Sci Total Environ ; 712: 136564, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31945523

ABSTRACT

Pharmaceutical compounds are continuously released into the aquatic environment, resulting in their ubiquitous presence in many estuarine and coastal systems. As pharmaceuticals are designed to produce effects at very low concentrations and target specific evolutionary conserved pathways, there are growing concerns over their potential deleterious effects to the environment and specifically to aquatic organisms, namely in early life-stages. In this context, the long-term effects of exposure of juvenile meagre Argyrosomus regius to three different pharmaceuticals were investigated. Fish were exposed to environmental concentrations of one of three major used pharmaceuticals: the antidepressant fluoxetine (0.3 and 3 µg/L for 15 days), the anti-hypertensive propranolol and the non-steroidal anti-inflammatory agent diclofenac (0.3 and 15 µg/L for 30 days). Pharmaceuticals bioconcentration in fish muscle was examined, along with biomarkers in different tissues related with antioxidant and biotransformation responses (catalase, superoxide dismutase, ethoxyresorufin-O-deethylase and glutathione S-transferase), energetic metabolism (lactate dehydrogenase, isocitrate dehydrogenase and electron transport system activities), neurotransmission (acetylcholinesterase activity) and oxidative damage (DNA damage and lipid peroxidation levels). Overall, each pharmaceutical had different potential for bioconcentration in the muscle (FLX > PROP > DCF) and induced different biological responses: fluoxetine was the most toxic compound to juvenile meagre, affecting fish growth, triggering antioxidant defense responses, inhibiting detoxification mechanisms and increasing lipid peroxidation and DNA damage in the liver; propranolol exposure increased DNA damage and decreased aerobic metabolism in fish muscle; and diclofenac showed no potential to bioconcentrate, yet it affected fish metabolism by increasing cellular energy consumption in the muscle and consequently reducing fish net energy budget. The diverse response patterns evidence the need for future research focused on pharmaceuticals with different modes of action and their exposure effects on organismal physiological mechanisms and homeostatic status. Ultimately, the combination of sub-individual and individual responses is key for ecologically relevant assessments of pharmaceutical toxicity.


Subject(s)
Fishes , Animals , Biomarkers , Diclofenac , Fluoxetine , Oxidative Stress , Propranolol , Water Pollutants, Chemical
4.
Article in English | MEDLINE | ID: mdl-28931493

ABSTRACT

The present study evaluated the effects of exposure to different target pCO2 levels: control (C: 370µatm, pH=8.15) and ocean acidification (OA: 710µatm, pH=7.85) on development and biochemical responses related with oxidative stress and energy metabolism during the crustacean Homarus gammarus (L.) larval development, integrating different levels of biological organization. After hatching in the laboratory, larvae from the same female brood were exposed to the described conditions from hatching until reaching Stage III (last larval stage - 11days). H. gammarus larvae demonstrated some susceptibility when addressing the predicted pCO2 levels for 2100. Further analysis at the biochemical and physiological level highlighted the occurrence of oxidative stress in the OA scenario (Superoxide Dismutase reduction and higher DNA damage) that was followed by developmental effects, increased inter-moult period from SII to SIII and reduced growth. The extended exposure to these conditions may affect organisms' key life-cycle functions such as physiological resistance, growth, sexual maturation, or reproduction with implications in their future fitness and population dynamics.


Subject(s)
Carbon Dioxide/toxicity , Nephropidae/drug effects , Seawater/chemistry , Animals , Biomarkers , Energy Metabolism/drug effects , Energy Metabolism/physiology , Hydrogen-Ion Concentration , Larva/growth & development , Molting , Nephropidae/growth & development , Oxidative Stress/drug effects , Oxidative Stress/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...