Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 203
Filter
1.
Front Plant Sci ; 14: 1171773, 2023.
Article in English | MEDLINE | ID: mdl-37287714

ABSTRACT

Introduction: Pearl millet is a staple cereal grown in the harshest environments of arid and semi-arid regions of Asia and sub-Saharan Africa. It is the primary source of calories for millions of people in these regions because it has better adaptation to harsh environmental conditions and better nutritional traits than many other cereals. By screening the pearl millet inbred germplasm association panel (PMiGAP), we earlier reported the best genotypes with the highest concentration of slowly digestible and resistant starch in their grains. Methods: In the current study, we tested these 20 top-performing pearl millet hybrids, identified based on starch data, in a randomised block design with three replications at five locations in West Africa, viz. Sadore and Konni (Niger), Bambey (Senegal), Kano (Nigeria), and Bawku (Ghana). Phenotypic variability was assessed for agronomic traits and mineral traits (Fe and Zn). Results and discussion: Analysis of variance demonstrated significant genotypic, environmental, and GEI effects among five testing environments for agronomic traits (days to 50% flowering, panicle length, and grain yield), starch traits (rapidly digestible starch, slowly digestible starch, resistant starch, and total starch), and mineral trait (iron and zinc). Starch traits, such as rapidly digestible starch (RDS) and slowly digestible starch (SDS), showed nonsignificant genotypic and environmental interactions but high heritability, indicating the lower environmental influence on these traits in the genotype × testing environments. Genotype stability and mean performance across all the traits were estimated by calculating the multi-trait stability index (MTSI), which showed that genotypes G3 (ICMX207070), G8 (ICMX207160), and G13 (ICMX207184) were the best performing and most stable among the five test environments.

2.
Cells ; 11(19)2022 10 02.
Article in English | MEDLINE | ID: mdl-36231070

ABSTRACT

Genotype × environment interactions (GEIs) should play an important role in the selection of suitable germplasm in breeding programmes. We here assessed GEI effects on pearl millet (Pennisetum glaucum L.) genotypes, selected to possess a high concentration of slowly digestible starch (SDS) and resistant starch (RS) in their grains. Entries were grown in a randomized complete block design with three replications at locations in Bawku-Ghana, Sadore-Niger, Bamako-Mali, Konni-Nigeria, and Gampella-Burkina Faso across West Africa. Harvested grains from these locations were metabolomically profiled using flow injection ionization-high-resolution mass spectrometry (FIE-HRMS). A total of 3144 mass features (m/z) (1560 negative ion mode and 1584 positive ion mode) were detected, of which, 475 m/z were linked to metabolites be involved in starch, antioxidant and lipid biosynthesis, and vitamin metabolism. Combined ANOVA revealed that the GEI was significantly evident for 54 health-benefiting metabolites, many associated with sugar, especially galactose, metabolism. Additive main effects and multiplicative interaction (AMMI) analysis examined genotype variation and GEI effects, which, when combined with principal component analysis (PCA), found that m/z 171.14864 (positive ionisation, propenyl heptanoate) accounted for 89% of the GEI variation along PC1. The AMMI-based stability parameter (ASTAB), modified AMMI stability value (MASV), and modified AMMI stability index (MASI) were then applied to identify stable and high-performing genotypes for all the health-benefiting metabolites. Similarly, the best-linear-unbiased-prediction (BLUP)-based stability estimation was also performed using the harmonic mean of genotypic values (HMGV), relative performance of genotypic values (RPGV), and harmonic mean of relative performance of genotypic values (HMRPGV), to identify genotype rankings across multiple environments. The multi-trait stability index (MTSI) was calculated and found that the genotypes G1 (ICMH-177111) and G24 (ICMX-207137) were the most stable and were the best mean performers across 52 health-benefiting metabolic traits. These findings demonstrate the potential of G × E assessments on the delivery of health-benefiting metabolite-rich grains in future varieties and hybrids of pearl millet.


Subject(s)
Pennisetum , Antioxidants , Galactose , Gene-Environment Interaction , Genotype , Heptanoates , Pennisetum/genetics , Resistant Starch , Starch , Vitamins
3.
Indian J Dermatol ; 67(2): 205, 2022.
Article in English | MEDLINE | ID: mdl-36092200

ABSTRACT

Objectives: To study the clinico-epidemiologic attributes of persons living with HIV/AIDS on highly active antiretroviral therapy (HAART). Methods: Clinico-epidemiological details, CD4 counts, previous illness and mucocutaneous diseases were studied in 515 persons living with HIV/AIDS on HAART. Results: The study comprised 250 (48.5%) males and 265 (51.5%) females aged between 10 and 79 (mean 38.9) years. The 196 (38%) males were drivers, staying-alone laborers/self-employed, and 253 (49.1%) females were homemakers. All were on HAART for one month to 9 years. Heterosexual transmission was noted in 478 (92.8%) individuals. The 274 (53.5%) individuals had 200-350 CD4 cells/mm3 counts, whereas it was <200 cells/mm3 in 88 (17.2%) individuals. Candidiasis (in 48), dermatophytoses (n = 23), herpes labialis (n = 13), herpes zoster (n = 12), seborrheic dermatitis (n = 29), generalized pruritus (n = 22), and xerosis in 20 individuals were the most common dermatoses. Most dermatoses occurred with 200-350 CD4 cells/mm3. Adverse drug reactions from antiretroviral therapy (ART) and concurrent therapies also occurred. Conclusions: Although most of our patients had mild HIV-associated dermatoses while on HAART, adverse drug reactions from HAART or concurrent therapies themselves remain a potential risk. Nevertheless, knowledge of these aspects will help planning for comprehensive health care envisaged in the National AIDS Control Program phase IV.

4.
Cells ; 10(11)2021 11 08.
Article in English | MEDLINE | ID: mdl-34831297

ABSTRACT

As efforts are made to increase food security, millets are gaining increasing importance due to their excellent nutritional credentials. Among the millets, pearl millet is the predominant species possessing several health benefiting nutritional traits in its grain that are helpful in mitigating chronic illnesses such as type-2 diabetes and obesity. In this paper, we conducted metabolomic fingerprinting of 197 pearl millet inbred lines drawn randomly from within the world collection of pearl millet germplasm and report the extent of genetic variation for health benefitting metabolites in these genotypes. Metabolites were extracted from seeds and assessed using flow infusion high-resolution mass spectrometry (FIE-HRMS). Metabolite features (m/z), whose levels significantly differed among the germplasm inbred lines, were identified by ANOVA corrected for FDR and subjected to functional pathway analysis. A number of health-benefiting metabolites linked to dietary starch, antioxidants, vitamins, and lipid metabolism-related compounds were identified. Metabolic genome-wide association analysis (mGWAS) performed using the 396 m/z as phenotypic traits and the 76 K SNP as genotypic variants identified a total of 897 SNPs associated with health benefiting nutritional metabolite at the -log p-value ≤ 4.0. From these associations, 738 probable candidate genes were predicted to have an important role in starch, antioxidants, vitamins, and lipid metabolism. The mGWAS analysis focused on genes involved in starch branching (α-amylase, ß-amylase), vitamin-K reductase, UDP-glucuronosyl, and UDP-glucosyl transferase (UGTs), L-ascorbate oxidase, and isoflavone 2'-monooxygenase genes, which are known to be linked to increases in human health benefiting metabolites. We demonstrate how metabolomic, genomic, and statistical approaches can be utilized to pinpoint genetic variations and their functions linked to key nutritional properties in pearl millet, which in turn can be bred into millets and other cereals crops using plant breeding methods.


Subject(s)
Genome, Plant , Genome-Wide Association Study , Health , Metabolome/genetics , Nutritional Physiological Phenomena , Pennisetum/genetics , Pennisetum/metabolism , Genetic Association Studies , Genetic Markers , Humans , Metabolic Networks and Pathways , Principal Component Analysis , Seeds/genetics
5.
Front Plant Sci ; 12: 599649, 2021.
Article in English | MEDLINE | ID: mdl-34122460

ABSTRACT

Pearl millet [Pennisetum glaucum (L.) R Br.] is an important staple food crop in the semi-arid tropics of Asia and Africa. It is a cereal grain that has the prospect to be used as a substitute for wheat flour for celiac patients. It is an important antioxidant food resource present with a wide range of phenolic compounds that are good sources of natural antioxidants. The present study aimed to identify the total antioxidant content of pearl millet flour and apply it to evaluate the antioxidant activity of its 222 genotypes drawn randomly from the pearl millet inbred germplasm association panel (PMiGAP), a world diversity panel of this crop. The total phenolic content (TPC) significantly correlated with DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity (% inhibition), which ranged from 2.32 to 112.45% and ferric-reducing antioxidant power (FRAP) activity ranging from 21.68 to 179.66 (mg ascorbic acid eq./100 g). Genome-wide association studies (GWAS) were conducted using 222 diverse accessions and 67 K SNPs distributed across all the seven pearl millet chromosomes. Approximately, 218 SNPs were found to be strongly associated with DPPH and FRAP activity at high confidence [-log (p) > 3.0-7.4]. Furthermore, flanking regions of significantly associated SNPs were explored for candidate gene harvesting. This identified 18 candidate genes related to antioxidant pathway genes (flavanone 7-O-beta-glycosyltransferase, GDSL esterase/lipase, glutathione S-transferase) residing within or near the association signal that can be selected for further functional characterization. Patterns of genetic variability and the associated genes reported in this study are useful findings, which would need further validation before their utilization in molecular breeding for high antioxidant-containing pearl millet cultivars.

6.
Int J Mol Sci ; 21(19)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992730

ABSTRACT

The exposure of living organisms to environmental stress triggers defensive responses resulting in the activation of protective processes. Whenever the exposure occurs at low doses, defensive effects overwhelm the adverse effects of the exposure; this adaptive situation is referred to as "hormesis". Environmental, physical, and nutritional hormetins lead to the stimulation and strengthening of the maintenance and repair systems in cells and tissues. Exercise, heat, and irradiation are examples of physical hormetins, which activate heat shock-, DNA repair-, and anti-oxidative-stress responses. The health promoting effect of many bio-actives in fruits and vegetables can be seen as the effect of mildly toxic compounds triggering this adaptive stimulus. Numerous studies indicate that living organisms possess the ability to adapt to adverse environmental conditions, as exemplified by the fact that DNA damage and gene expression profiling in populations living in the environment with high levels of air pollution do not correspond to the concentrations of pollutants. The molecular mechanisms of the hormetic response include modulation of (a) transcription factor Nrf2 activating the synthesis of glutathione and the subsequent protection of the cell; (b) DNA methylation; and (c) microRNA. These findings provide evidence that hormesis is a toxicological event, occurring at low exposure doses to environmental stressors, having the benefit for the maintenance of a healthy status.


Subject(s)
Adaptation, Physiological , Epigenesis, Genetic , Hormesis , Stress, Physiological , Animals , DNA Damage , Gene Expression Regulation , Humans , Oxidative Stress
7.
PLoS One ; 14(8): e0218916, 2019.
Article in English | MEDLINE | ID: mdl-31461465

ABSTRACT

Pearl millet is an important crop for arid and semi-arid regions of the world. Genomic regions associated with combining ability for yield-related traits under irrigated and drought conditions are useful in heterosis breeding programs. Chromosome segment substitution lines (CSSLs) are excellent genetic resources for precise QTL mapping and identifying naturally occurring favorable alleles. In the present study, testcross hybrid populations of 85 CSSLs were evaluated for 15 grain and stover yield-related traits for summer and wet seasons under irrigated control (CN) and moisture stress (MS) conditions. General combining ability (GCA) and specific combining ability (SCA) effects of all these traits were estimated and significant marker loci linked to GCA and SCA of the traits were identified. Heritability of the traits ranged from 53-94% in CN and 63-94% in MS. A total of 40 significant GCA loci and 36 significant SCA loci were identified for 14 different traits. Five QTLs (flowering time, panicle number and panicle yield linked to Xpsmp716 on LG4, flowering time and grain number per panicle with Xpsmp2076 on LG4) simultaneously controlled both GCA and SCA, demonstrating their unique genetic basis and usefulness for hybrid breeding programs. This study for the first time demonstrated the potential of a set of CSSLs for trait mapping in pearl millet. The novel combining ability loci linked with GCA and SCA values of the traits identified in this study may be useful in pearl millet hybrid and population improvement programs using marker-assisted selection (MAS).


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Environment , Genetic Loci/genetics , Pennisetum/genetics , Pennisetum/growth & development
8.
Acta Biomater ; 86: 117-124, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30641290

ABSTRACT

Whales, dolphins, and porpoises have unusual vaginal folds of unknown function(s) that are hypothesized to play an important role in sexual selection. The potential function of vaginal folds was assessed by testing the mechanical properties of common bottlenose dolphin (Tursiops truncatus) reproductive tract tissues in 6 different regions and across age classes in post-mortem specimens. We assessed the regional (local) and overall effective elastic modulus of tissues using indentation and tensile tests, respectively. We explore the non-linear mechanical response of biological tissues, which are not often quantified. Indentation tests demonstrated that sexual maturity state, tissue region, force history, and force magnitude values significantly affected the measured effective elastic modulus. Tissue was stiffest in the vaginal fold region and overall stiffer in sexually immature compared to mature animals, likely reflecting biomechanical adaptations associated with copulation and parturition. Tensile tests showed that only tissue region significantly affected the effective modulus. Our data support the hypothesis that vaginal folds function as mechanical barriers to the penis and may provide females with mechanisms to reduce copulatory forces on other reproductive tissue. STATEMENT OF SIGNIFICANCE: Cetaceans have unusual folds of vaginal wall tissue that appear to evolve under sexual selection mechanisms and present physical barriers to the penis during copulation. We explore the biomaterial properties of vaginal fold tissue, how it varies from other reproductive tract tissues, and ontogenetic patterns. We demonstrate that vaginal folds can withstand higher mechanical forces and respond in a manner conducive to dissipating copulatory forces to other reproductive tissues. This study yields exciting insights on how female genital tissue may function during copulation, and is the first to do so in any vertebrate species. Additionally, we provide an example for testing biological tissues, non-linear properties, and materials with uneven surface structure and uneven thickness.


Subject(s)
Dolphins/physiology , Genitalia, Female/physiology , Animals , Biomechanical Phenomena , Dolphins/anatomy & histology , Elastic Modulus , Female , Genitalia, Female/anatomy & histology , Tensile Strength
9.
Front Genet ; 10: 1389, 2019.
Article in English | MEDLINE | ID: mdl-32180790

ABSTRACT

Pearl millet is a climate-resilient, drought-tolerant crop capable of growing in marginal environments of arid and semi-arid regions globally. Pearl millet is a staple food for more than 90 million people living in poverty and can address the triple burden of malnutrition substantially. It remained a neglected crop until the turn of the 21st century, and much emphasis has been placed since then on the development of various genetic and genomic resources for whole-genome scan studies, such as the genome-wide association studies (GWAS) and genomic selection (GS). This was facilitated by the advent of sequencing-based genotyping, such as genotyping-by-sequencing (GBS), RAD-sequencing, and whole-genome re-sequencing (WGRS) in pearl millet. To carry out GWAS and GS, a world association mapping panel called the Pearl Millet inbred Germplasm Association Panel (PMiGAP) was developed at ICRISAT in partnership with Aberystwyth University. This panel consisted of germplasm lines, landraces, and breeding lines from 27 countries and was re-sequenced using the WGRS approach. It has a repository of circa 29 million genome-wide SNPs. PMiGAP has been used to map traits related to drought tolerance, grain Fe and Zn content, nitrogen use efficiency, components of endosperm starch, grain yield, etc. Genomic selection in pearl millet was jump-started recently by WGRS, RAD, and tGBS (tunable genotyping-by-sequencing) approaches for the PMiGAP and hybrid parental lines. Using multi-environment phenotyping of various training populations, initial attempts have been made to develop genomic selection models. This mini review discusses advances and prospects in GWAS and GS for pearl millet.

10.
Genes (Basel) ; 9(5)2018 May 11.
Article in English | MEDLINE | ID: mdl-29751669

ABSTRACT

Pearl millet is a climate-resilient nutritious crop requiring low inputs and is capable of giving economic returns in marginal agro-ecologies. In this study, we report large-effect iron (Fe) and zinc (Zn) content quantitative trait loci (QTLs) using diversity array technology (DArT) and simple sequence repeats (SSRs) markers to generate a genetic linkage map using 317 recombinant inbred line (RIL) population derived from the (ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-183-2-2-B-08) cross. The base map [seven linkage groups (LGs)] of 196 loci was 964.2 cM in length (Haldane). AIMP 92901-S1-183-2-2-B-08 is an Iniadi line with high grain Fe and Zn, tracing its origin to the Togolese Republic, West Africa. The content of grain Fe in the RIL population ranged between 20 and 131 ppm (parts per million), and that of Zn from 18 to 110 ppm. QTL analysis revealed a large number of QTLs for high grain iron (Fe) and zinc (Zn) content. A total of 19 QTLs for Fe and Zn were detected, of which 11 were for Fe and eight were for Zn. The portion of the observed phenotypic variance explained by different QTLs for grain Fe and Zn content varied from 9.0 to 31.9% (cumulative 74%) and from 9.4 to 30.4% (cumulative 65%), respectively. Three large-effect QTLs for both minerals were co-mapped in this population, one on LG1 and two on LG7. The favorable QTL alleles of both mineral micronutrients were contributed by the male parent (AIMP 92901-deriv-08). Three putative epistasis interactions were observed for Fe content, while a single digenic interaction was found for Zn content. The reported QTLs may be useful in marker-assisted selection (MAS) programs, in genomic selection (GS) breeding pipelines for seed and restorer parents, and in population improvement programs for pearl millet.

11.
Indian Dermatol Online J ; 9(1): 20-26, 2018.
Article in English | MEDLINE | ID: mdl-29441293

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD)-associated mucocutaneous manifestations significantly impair the quality of life but often remain understudied. They may also vary across regions, socioeconomic and nutritional status, and racial differences. OBJECTIVES: To study the patterns of mucocutaneous disorders and their prevalence in CKD patients irrespective of clinical stage or dialysis status. MATERIALS AND METHODS: 122 (M:F = 77:45) patients aged 21‒85 (Mean ± SD = 57.5 ± 14.0) years having CKD for 3 month to 5 years were studied for mucocutaneous manifestations. Fifty (41%) patients were on hemodialysis for 1‒42 months. Detailed medical history, clinical and mucocutaneous examination, and lab investigations were performed. KOH mounts, skin biopsy, Gram's and Giemsa staining, bacterial or fungal cultures were performed as required. RESULTS: Xerosis in 93 (76.2%), skin pallor in 61 (50%), pruritus in 57 (46.7%), pigmentation in 47 (38.5%), and purpura in 18 (14.8%) patients were the major dermatoses. Bullous lesions and perforating folliculitis occurred in 3 (2.5%) patients each. Major nail abnormalities were pallor (in 35.2%), absent lunula (in 23.8%), nail discoloration (in 18%), and "half-and-half nails" in 16.4% patients, respectively. Hair abnormalities included sparse scalp and body hairs (in 35.2% and 13.1%, respectively) and lusterless hair in 12.3% patients. Coated tongue (in 14.8%), xerostomia (in 12.3%), and macroglossia with teeth indention (in 7.4%) patients were the mucosal manifestations. CONCLUSIONS: Xerosis, pruritus, skin pallor/pigmentary changes, nail pallor, absent lunula, nail discoloration, sparse hairs, coated tongue, xerostomia, macroglossia, and infections were the most common mucocutaneous manifestations in the studied patients irrespective of hemodialysis status. Cold and dry climates might be additional aggravators for xerosis/pruritus. Lifelong follow-up may be needed to reduce the morbidity associated with CKD/hemodialysis specific dermatoses appearing over a period.

12.
Food Energy Secur ; 7(4): e00145, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30774947

ABSTRACT

The incorporation of new sophisticated phenotyping technologies within a crop improvement program allows for a plant breeding strategy that can include selections for major root traits previously inaccessible due to the challenges in their phenotype assessment. High-throughput precision phenotyping technology is employed to evaluate root ontogeny and progressive changes to root architecture of both novel amphiploid and introgression lines of Festulolium over four consecutive months of the growing season and these compared under the same time frame to that of closely related perennial ryegrass (L. perenne) varieties. Root imaging using conventional photography and assembled multiple merged images was used to compare frequencies in root number, their distribution within 0-20 and 20-40 cm depths within soil columns, and progressive changes over time. The Festulolium hybrids had more extensive root systems in comparison with L. perenne, and this was especially evident at depth. It was shown that the acquisition of extensive root systems in Festulolium hybrids was not dependent on the presence of an entire Festuca genome. On the contrary, the most pronounced effect on root development within the four Festulolium populations studied was observed in the introgression line Bx509, where a single small genome sequence from F. arundinacea had been previously transferred onto its homoeologous site on the long arm of chromosome 3 of an otherwise complete L. perenne genome. This demonstrates that a targeted introgression-breeding approach may be sufficient to confer a significant improvement in the root morphology in Lolium without a significant compromise to its genome integrity. The forage production of Bx509 was either higher (months 1-3) or equivalent to (month 4) that of its L. perenne parent control demonstrating that the enhanced root development achieved by the introgression line was without compromise to its agronomic performance.

13.
Biotechnol Rep (Amst) ; 16: 18-20, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29062722

ABSTRACT

Sclerospora graminicola pathogen is the most important biotic production constraints of pearl millet in India, Africa and other parts of the world. We report a de novo whole genome assembly and analysis of pathotype 1, one of the most virulent pathotypes of S. graminicola from India. The draft genome assembly contained 299,901,251 bp with 65,404 genes. This study may help understand the evolutionary pattern of pathogen and aid elucidation of effector evolution for devising effective durable resistance breeding strategies in pearl millet.

14.
Nat Biotechnol ; 35(10): 969-976, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28922347

ABSTRACT

Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ∼1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.


Subject(s)
Agriculture , Desert Climate , Genome, Plant , Pennisetum/genetics , Quantitative Trait, Heritable , Base Sequence , Conserved Sequence , Genes, Plant , Genetic Variation , Genome-Wide Association Study , Hybridization, Genetic , Molecular Sequence Annotation
16.
Aliment Pharmacol Ther ; 45(7): 883-898, 2017 04.
Article in English | MEDLINE | ID: mdl-28185291

ABSTRACT

BACKGROUND: Gastrointestinal tract (GIT) involvement is a common cause of debilitating symptoms in patients with systemic sclerosis (SSc). There are no disease modifying therapies for this condition and the treatment remains symptomatic, largely owing to the lack of a clear understanding of its pathogenesis. AIMS: To investigate novel aspects of the pathogenesis of gastrointestinal involvement in SSc. To summarise existing knowledge regarding the cardinal clinical gastrointestinal manifestations of SSc and its pathogenesis, emphasising recent investigations that may be valuable in identifying potentially novel therapeutic targets. METHODS: Electronic (PubMed/Medline) and manual Google search. RESULTS: The GIT is the most common internal organ involved in SSc. Any part of the GIT from the mouth to the anus can be affected. There is substantial variability in clinical manifestations and disease course and symptoms are nonspecific and overlapping for a particular anatomical site. Gastrointestinal involvement can occur in the absence of cutaneous disease. Up to 8% of SSc patients develop severe GIT symptoms. This subset of patients display increased mortality with only 15% survival at 9 years. Dysmotiity of the GIT causes the majority of symptoms. Recent investigations have identified a novel mechanism in the pathogenesis of GIT dysmotility mediated by functional anti-muscarinic receptor autoantibodies. CONCLUSIONS: Despite extensive investigation, the pathogenesis of gastrointestinal involvement in systemic sclerosis remains elusive. Although treatment currently remains symptomatic, an improved understanding of novel pathogenic mechanisms may allow the development of potentially highly effective approaches including intravenous immunoglobulin and microRNA based therapeutic interventions.


Subject(s)
Gastrointestinal Tract/pathology , Scleroderma, Systemic/pathology , Animals , Fibrosis , Humans , Immunity, Cellular , Immunity, Humoral , Scleroderma, Systemic/diagnosis , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/immunology
17.
Front Plant Sci ; 8: 1934, 2017.
Article in English | MEDLINE | ID: mdl-29552020

ABSTRACT

Pearl millet is a climate resilient crop and one of the most widely grown millets worldwide. Heterotic hybrid development is one of the principal breeding objectives in pearl millet. In a maiden attempt to identify heterotic groups for grain yield, a total of 343 hybrid parental [maintainer (B-) and restorer (R-)] lines were genotyped with 88 polymorphic SSR markers. The SSRs generated a total of 532 alleles with a mean value of 6.05 alleles per locus, mean gene diversity of 0.55, and an average PIC of 0.50. Out of 532 alleles, 443 (83.27%) alleles were contributed by B-lines with a mean of 5.03 alleles per locus. R-lines contributed 476 alleles (89.47%) with a mean of 5.41, while 441 (82.89%) alleles were shared commonly between B- and R-lines. The gene diversity was higher among R-lines (0.55) compared to B-lines (0.49). The unweighted neighbor-joining tree based on simple matching dissimilarity matrix obtained from SSR data clearly differentiated B- lines into 10 sub-clusters (B1 through B10), and R- lines into 11 sub-clusters (R1 through R11). A total of 99 hybrids (generated by crossing representative 9 B- and 11 R- lines) along with checks were evaluated in the hybrid trial. The 20 parents were evaluated in the line trial. Both the trials were evaluated in three environments. Based on per se performance, high sca effects and standard heterosis, F1s generated from crosses between representatives of groups B10R5, B3R5, B3R6, B4UD, B5R11, B2R4, and B9R9 had high specific combining ability for grain yield compared to rest of the crosses. These groups may represent putative heterotic gene pools in pearl millet.

18.
Front Plant Sci ; 8: 1731, 2017.
Article in English | MEDLINE | ID: mdl-29326729

ABSTRACT

Pearl millet [Pennisetum glaucum (L.) R. Br.] is a staple crop for the people of arid and semi-arid regions of the world. It is fast gaining importance as a climate resilient nutricereal. Exploiting the bold seeded, semi-dwarf, and early flowering genotypes in pearl millet is a key breeding strategy to enhance yield, adaptability, and for adequate food in resource-poor zones. Genetic variation for agronomic traits of pearl millet inbreds can be used to dissect complex traits through quantitative trait locus (QTL) mapping. This study was undertaken to map a set of agronomically important traits like flowering time (FT), plant height (PH), panicle length (PL), and grain weight (self and open-pollinated seeds) in the recombinant inbred line (RIL) population of ICMB 841-P3 × 863B-P2 cross. Excluding grain weight (open pollinated), heritabilities for FT, PH, PL, grain weight (selfed) were in high to medium range. A total of six QTLs for FT were detected on five chromosomes, 13 QTLs for PH on six chromosomes, 11 QTLs for PL on five chromosomes, and 14 QTLs for 1,000-grain weight (TGW) spanning five chromosomes. One major QTL on LG3 was common for FT and PH. Three major QTLs for PL, one each on LG1, LG2, and LG6B were detected. The large effect QTL for TGW (self) on LG6B had a phenotypic variance (R2) of 62.1%. The R2 for FT, TGW (self), and PL ranged from 22.3 to 59.4%. A total of 21 digenic interactions were discovered for FT (R2 = 18-40%) and PL (R2 = 13-19%). The epistatic effects did not reveal any significant QTL × QTL × environment (QQE) interactions. The mapped QTLs for flowering time and other agronomic traits in present experiment can be used for marker-assisted selection (MAS) and genomic selection (GS) breeding programs.

19.
Front Plant Sci ; 7: 1636, 2016.
Article in English | MEDLINE | ID: mdl-27933068

ABSTRACT

Pearl millet is a multipurpose grain/fodder crop of the semi-arid tropics, feeding many of the world's poorest and most undernourished people. Genetic variation among adapted pearl millet inbreds and hybrids suggests it will be possible to improve grain micronutrient concentrations by selective breeding. Using 305 loci, a linkage map was constructed to map QTLs for grain iron [Fe] and zinc [Zn] using replicated samples of 106 pearl millet RILs (F6) derived from ICMB 841-P3 × 863B-P2. The grains of the RIL population were evaluated for Fe and Zn content using atomic absorption spectrophotometer. Grain mineral concentrations ranged from 28.4 to 124.0 ppm for Fe and 28.7 to 119.8 ppm for Zn. Similarly, grain Fe and Zn in open pollinated seeds ranged between 22.4-77.4 and 21.9-73.7 ppm, respectively. Mapping with 305 (96 SSRs; 208 DArT) markers detected seven linkage groups covering 1749 cM (Haldane) with an average intermarker distance of 5.73 cM. On the basis of two environment phenotypic data, two co-localized QTLs for Fe and Zn content on linkage group (LG) 3 were identified by composite interval mapping (CIM). Fe QTL explained 19% phenotypic variation, whereas the Zn QTL explained 36% phenotypic variation. Likewise for open pollinated seeds, the QTL analysis led to the identification of two QTLs for grain Fe content on LG3 and 5, and two QTLs for grain Zn content on LG3 and 7. The total phenotypic variance for Fe and Zn QTLs in open pollinated seeds was 16 and 42%, respectively. Analysis of QTL × QTL and QTL × QTL × environment interactions indicated no major epistasis.

20.
Front Plant Sci ; 7: 1724, 2016.
Article in English | MEDLINE | ID: mdl-27920783

ABSTRACT

Pearl millet [Penisetum glaucum (L) R. Br.] is a hardy cereal crop grown in the arid and semiarid tropics where other cereals are likely to fail to produce economic yields due to drought and heat stresses. Adaptive evolution, a form of natural selection shaped the crop to grow and yield satisfactorily with limited moisture supply or under periodic water deficits in the soil. Drought tolerance is a complex polygenic trait that various morphological and physiological responses are controlled by 100s of genes and significantly influenced by the environment. The development of genomic tools will have enormous potential to improve the efficiency and precision of conventional breeding. The apparent independent domestication events, highly outcrossing nature and traditional cultivation in stressful environments maintained tremendous amount of polymorphism in pearl millet. This high polymorphism of the crop has been revealed by genome mapping that in turn stimulated the mapping and tagging of genomic regions controlling important traits such as drought tolerance. Mapping of a major QTL for terminal drought tolerance in independent populations envisaged the prospect for the development of molecular breeding in pearl millet. To accelerate genetic gains for drought tolerance targeted novel approaches such as establishment of marker-trait associations, genomic selection tools, genome sequence and genotyping-by-sequencing are still limited. Development and application of high throughput genomic tools need to be intensified to improve the breeding efficiency of pearl millet to minimize the impact of climate change on its production.

SELECTION OF CITATIONS
SEARCH DETAIL
...