Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(26): 68969-68986, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37129818

ABSTRACT

In this paper, we present the first attempt to evaluate the role of carboxymethyl cellulose (CMC) as a chelating agent in the sol-gel auto-combustion method of producing barium hexaferrite (BaFe12O19). We also report the application of the system as a photocatalyst for dye degradation. The formation, morphology, and crystalline structure of the synthesized nanoparticles are determined using XRD, SEM, EDS, VSM, FTIR, and TEM techniques. High efficiency under visible light, with a band gap of 1.62 eV and a BET surface of 17.93 m2/g, has been observed for the BaFe12O19 catalyst. The operating parameters, such as reaction time, initial dye concentration, light intensity, reusability, and dye type, are studied. Degradation rates as high as 98.26% (Kapp = 0.082 min-1) and 89.07% (Kapp = 0.0743 min-1) were obtained for cases of methylene blue and malachite green under conditions of visible light irradiations when BaFe12O19 was used. The BaFe12O19 catalyst has been shown to exhibit a high degradation performance for cationic dyes. Furthermore, BaFe12O19 magnetic nanoparticles show excellent reusability for dye degradation because the photocatalyst did not exhibit a significant decrease in its activity even after five runs (81.56%). As a result, the current study confirmed that photocatalytic degradation was a promising technology for saving water and treating wastewater formed from textile dye industries. The technique can be used to study the efficiency of photocatalytic degradation and understand the process of recycling waste effluents under conditions of minimized water use.


Subject(s)
Coloring Agents , Light , Coloring Agents/chemistry , Barium Compounds , Water/chemistry , Catalysis
2.
J Photochem Photobiol B ; 240: 112668, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36774718

ABSTRACT

This study investigated the environment-friendly production and characterization of zinc oxide nanoparticles (ZnO NPs) doped with sodium (Na) and aluminum (Al) metals to decrease the photocatalytic activity of ZnO for use in sunscreen. The metal-doped zinc oxide (ZnO) materials were prepared by the microwave method using extracts of Averrhoa carambola, also known as star fruit, as a reducing agent. The effects of metal-ion doping on the crystal structure, morphology, and optical characteristics of ZnO were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), and ultraviolet-visible (UV-Vis) spectroscopy. The sun protection factor (SPF) of the sunscreen formulations containing undoped ZnO, Na-doped ZnO (Na/ZnO), and Al-doped ZnO (Al/ZnO) NPs were found to be 10.10, 25.10, and 43.08, respectively. Therefore, Na/ZnO and Al/ZnO showed increased SPF. Additionally, the prepared nanomaterials and sunscreens were effective against Gram-positive and Gram-negative bacteria and showed antioxidant activities. The methylene blue (MB) degradation was used to evaluate the photocatalytic activities of the undoped ZnO, Na/ZnO, and Al/ZnO NPs, which were found to be 66%, 46%, and 38%, respectively. Therefore, due to the structural defects of ZnO NPs, their photocatalytic activity was decreased with Na- and Al- doping. Additionally, Al/ZnO is an ideal candidate as an ingredient in sunscreens.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Sunscreening Agents/pharmacology , Aluminum , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Oxides/pharmacology , Sodium , Metal Nanoparticles/chemistry , X-Ray Diffraction
3.
Molecules ; 27(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35209190

ABSTRACT

2',4'-Dihydroxy-6'-methoxy-3',5'-dimethyl chalcone (DMC) is a biological flavonoid that is present in the fruits of Syzygium nervosum (Ma-Kiang in Thai). Microwave-assisted extraction (MAE), which utilizes microwave radiation to heat the extraction solvent quickly and effectively, was used to recover DMC-rich extract from Syzygium nervosum fruit. To determine the DMC content, a highly accurate and precise HPLC technique was developed. The influences of MAE conditions, including the solid-liquid ratio, microwave power, and microwave duration on the content of DMC, were sequentially employed by a single factor investigation and response surface methodology (RSM) exploratory design. The predicted quadratic models were fitted due to their highly significant (p < 0.0001) and excellent determination coefficient (R2 = 0.9944). The optimal conditions for producing DMC-rich extract were a ratio of sample to solvent of 1:35 g/mL, a microwave power of 350 W, and a microwave time of 38 min. Under the optimal MAE setting, the DMC content reached 1409 ± 24 µg/g dry sample, which was greater than that of the conventional heat reflux extraction (HRE) (1337 ± 37 µg/g dry sample) and maceration (1225 ± 81 µg/g dry sample). The DMC-rich extract obtained from MAE showed stronger anticancer activities against A549 (human lung cancer cells) and HepG2 (human liver cancer cells) than the individual DMC substance, which makes MAE an effective method for extracting essential phytochemicals from plants in the nature.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Chalcone/isolation & purification , Chalcone/pharmacology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Syzygium/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Chalcone/analogs & derivatives , Chalcone/chemistry , Chemical Fractionation/methods , Chromatography, High Pressure Liquid , Fruit/chemistry , Humans , Microwaves , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...