Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334619

ABSTRACT

Endogenous double-stranded RNA has emerged as a potent stimulator of innate immunity. Under physiological conditions, endogenous dsRNA is maintained in the cell nucleus or the mitochondria; however, if protective mechanisms are breached, it leaches into the cytoplasm and triggers immune signaling pathways. Ectopic activation of innate immune pathways is associated with various diseases and senescence and can trigger apoptosis. Hereby, the level of cytoplasmic dsRNA is crucial. We have enriched dsRNA from two melanoma cell lines and primary dermal fibroblasts, including a competing probe, and analyzed the dsRNA transcriptome using RNA sequencing. There was a striking difference in read counts between the cell lines and the primary cells, and the effect was confirmed by northern blotting and immunocytochemistry. Both mitochondria (10-20%) and nuclear transcription (80-90%) contributed significantly to the dsRNA transcriptome. The mitochondrial contribution was lower in the cancer cells compared to fibroblasts. The expression of different transposable element families was comparable, suggesting a general up-regulation of transposable element expression rather than stimulation of a specific sub-family. Sequencing of the input control revealed minor differences in dsRNA processing pathways with an upregulation of oligoadenylate synthase and RNP125 that negatively regulates the dsRNA sensors RIG1 and MDA5. Moreover, RT-qPCR, Western blotting, and immunocytochemistry confirmed the relatively minor adaptations to the hugely different dsRNA levels. As a consequence, these transformed cell lines are potentially less tolerant to interventions that increase the formation of endogenous dsRNA.


Subject(s)
DNA Transposable Elements , RNA, Double-Stranded , Cells, Cultured , Immunity, Innate/genetics , Cell Line
2.
PeerJ ; 10: e13989, 2022.
Article in English | MEDLINE | ID: mdl-36164603

ABSTRACT

The influenza virus is a cause of seasonal epidemic disease and enormous economic injury. The best way to control influenza outbreaks is through vaccination. The Madin-Darby canine kidney cell line (MDCK) is currently approved to manufacture influenza vaccines. However, the viral load from cell-based production is limited by host interferons (IFN). Interferon regulating factor 7 (IRF7) is a transcription factor for type-I IFN that plays an important role in regulating the anti-viral mechanism and eliminating viruses. We developed IRF7 knock-out MDCK cells (IRF7-/ - MDCK) using CRISPR/Cas9 technology. The RNA expression levels of IRF7 in the IRF7-/ - MDCK cells were reduced by 94.76% and 95.22% under the uninfected and infected conditions, respectively. Furthermore, the IRF7 protein level was also significantly lower in IRF7-/ - MDCK cells for both uninfected (54.85% reduction) and viral infected conditions (32.27% reduction) compared to WT MDCK. The differential expression analysis of IFN-related genes demonstrated that the IRF7-/ - MDCK cell had a lower interferon response than wildtype MDCK under the influenza-infected condition. Gene ontology revealed down-regulation of the defense response against virus and IFN-gamma production in IRF7-/ - MDCK. The evaluation of influenza viral titers by RT-qPCR and hemagglutination assay (HA) revealed IRF7-/ - MDCK cells had higher viral titers in cell supernatant, including A/pH1N1 (4 to 5-fold) and B/Yamagata (2-fold). Therefore, the IRF7-/ - MDCK cells could be applied to cell-based influenza vaccine production with higher capacity and efficiency.


Subject(s)
Influenza Vaccines , Influenza, Human , Interferon Type I , Orthomyxoviridae , Animals , Dogs , Humans , Influenza Vaccines/genetics , Madin Darby Canine Kidney Cells , Influenza, Human/genetics , Factor VII/genetics , CRISPR-Cas Systems/genetics , Virus Replication/genetics , Interferon Type I/genetics , Technology
3.
Genomics Inform ; 20(2): e21, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35794701

ABSTRACT

The influenza A viruses have high mutation rates and cause a serious health problem worldwide. Therefore, this study focused on genome characterization of the viruses isolated from Thai patients based on the next-generation sequencing technology. The nasal swabs were collected from patients with influenza-like illness in Thailand during 2017-2018. Then, the influenza A viruses were detected by reverse transcription-quantitative polymerase chain reaction and isolated by MDCK cells. The viral genomes were amplified and sequenced by Illumina MiSeq platform. Whole genome sequences were used for characterization, phylogenetic construction, mutation analysis and nucleotide diversity of the viruses. The result revealed that 90 samples were positive for the viruses including 44 of A/ H1N1 and 46 of A/H3N2. Among these, 43 samples were successfully isolated and then the viral genomes of 25 samples were completely amplified. Finally, 17 whole genomes of the viruses (A/H1N1, n=12 and A/H3N2, n=5) were successfully sequenced with an average of 232,578 mapped reads and 1,720 genome coverage per sample. Phylogenetic analysis demonstrated that the A/H1N1 viruses were distinguishable from the recommended vaccine strains. However, the A/H3N2 viruses from this study were closely related to the recommended vaccine strains. The nonsynonymous mutations were found in all genes of both viruses, especially in hemagglutinin (HA) and neuraminidase (NA) genes. The nucleotide diversity analysis revealed negative selection in the PB1, PA, HA, and NA genes of the A/H1N1 viruses. High-throughput data in this study allow for genetic characterization of circulating influenza viruses which would be crucial for preparation against pandemic and epidemic outbreaks in the future.

4.
Exp Biol Med (Maywood) ; 247(15): 1335-1349, 2022 08.
Article in English | MEDLINE | ID: mdl-35666095

ABSTRACT

Annual influenza vaccine is recommended to reduce the occurrence of seasonal influenza and its complications. Thus far, Madin-Darby canine kidney (MDCK) cell line has been used to manufacture cell-based influenza vaccines. Even though host microRNAs may facilitate viral replication, the interaction between MDCK cells-derived microRNAs and seasonal influenza viruses has been less frequently investigated. Therefore, this study highlighted microRNA profiles of MDCK cells to increase the yield of seasonal influenza virus production by manipulating cellular microRNAs. MDCK cells were infected with influenza A or B virus at a multiplicity of infection (MOI) of 0.01, and microRNA collections were then subjected to MiSeq (Illumina) Sequencing. The validated profiles revealed that cfa-miR-340, cfa-miR-146b, cfa-miR-197, and cfa-miR-215 were the most frequently upregulated microRNAs. The effect of candidate microRNA inhibition and overexpression on viral replication was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). The hybridization pattern between candidate miRNAs and viral genes was performed using miRBase and RNAhybrid web-based programs. Moreover, the predicted microRNA-binding sites were validated by a 3'-UTR reporter assay. The results indicated that cfa-miR-146b could directly target the PB1 gene of A/pH1N1 and the PA gene of B/Yamagata. Furthermore, cfa-miR-215 could silence the PB1 gene of A/pH1N1 and the PB1 gene of B/Victoria. However, the PB2 gene of the A/H3N2 virus was silenced by cfa-miR-197. In addition, the HA and NA sequences of influenza viruses harvested from the cell cultures treated with microRNA inhibitors were analyzed. The sequencing results revealed no difference in the antigenic HA and NA sequences between viruses isolated from the cells treated with microRNA inhibitors and the parental viruses. In conclusion, these findings suggested that MDCK cell-derived microRNAs target viral genes in a strain-specific manner for suppressing viral replication. Conversely, the use of such microRNA inhibitors may facilitate the production of influenza viruses.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , MicroRNAs , Animals , Dogs , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza A virus/genetics , Influenza Vaccines/genetics , Kidney , Madin Darby Canine Kidney Cells , MicroRNAs/genetics , Seasons , Virus Replication/genetics
5.
Exp Biol Med (Maywood) ; 247(5): 409-415, 2022 03.
Article in English | MEDLINE | ID: mdl-34775842

ABSTRACT

The upper respiratory tract is inhabited by diverse range of commensal microbiota which plays a role in protecting the mucosal surface from pathogens. Alterations of the bacterial community from respiratory viral infections could increase the susceptibility to secondary infections and disease severities. We compared the upper respiratory bacterial profiles among Thai patients with influenza or COVID-19 by using 16S rDNA high-throughput sequencing based on MiSeq platform. The Chao1 richness was not significantly different among groups, whereas the Shannon diversity of Flu A and Flu B groups were significantly lower than Non-Flu & COVID-19 group. The beta diversity revealed that the microbial communities of influenza (Flu A and Flu B), COVID-19, and Non-Flu & COVID-19 were significantly different; however, the comparison of the community structure was similar between Flu A and Flu B groups. The bacterial classification revealed that Enterobacteriaceae was predominant in influenza patients, while Staphylococcus and Pseudomonas were significantly enriched in the COVID-19 patients. These implied that respiratory viral infections might be related to alteration of upper respiratory bacterial community and susceptibility to secondary bacterial infections. Moreover, the bacteria that observed in Non-Flu & COVID-19 patients had high abundance of Streptococcus, Prevotella, Veillonella, and Fusobacterium. This study provides the basic knowledge for further investigation of the relationship between upper respiratory microbiota and respiratory disease which might be useful for better understanding the mechanism of viral infectious diseases.


Subject(s)
Bacteria/genetics , COVID-19/microbiology , Influenza, Human/microbiology , Microbiota/physiology , Nasopharynx/microbiology , Adolescent , Adult , Humans , Microbiota/genetics , Middle Aged , Retrospective Studies , Young Adult
6.
J Virol Methods ; 290: 114092, 2021 04.
Article in English | MEDLINE | ID: mdl-33539846

ABSTRACT

COVID-19 pandemic caused by SARS-CoV-2 infection continue to cause the morbidity and mortality in many countries. Limitations of the gold standard qRT-PCR for diagnosis of this infection includes need for expensive equipment, specialized molecular laboratory, and experienced staff. Currently, CRISPR-based diagnostic method was approved by the U.S. FDA for rapid detection. Several studies developed SARS-CoV-2 detection based on CRISPR-Cas12a platform; however, the validations with RNA extracted from clinical specimens were limited. Therefore, this study evaluated the clinical performance of previously described CRISPR-Cas12a based diagnostic assays for SARS-CoV-2. According to the results, the CRISPR-Cas12a assays on N1 and S genes provided diagnostic accuracy (≥ 95 %) comparable to the qRT-PCR results. The assays with E, N2 and S genes yielded acceptable sensitivity of detection (≥ 95 %) whereas N1 and S genes provided outstanding specificity of detection (100 %). Preferably, multiple target genes should be detected by using CRISPR-Cas12a to ensure the most effective SARS-CoV-2 detection. Therefore, the N1 and S genes would be attractive target genes for SARS-CoV-2 detection based on CRISPR-Cas12a.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , CRISPR-Cas Systems , SARS-CoV-2/isolation & purification , Bacterial Proteins , COVID-19 Nucleic Acid Testing/standards , CRISPR-Associated Proteins , Clustered Regularly Interspaced Short Palindromic Repeats , Endodeoxyribonucleases , Humans , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Viral Proteins/genetics
7.
Exp Biol Med (Maywood) ; 246(4): 400-405, 2021 02.
Article in English | MEDLINE | ID: mdl-33153299

ABSTRACT

Due to the common symptoms of COVID-19, patients are similar to influenza-like illness. Therefore, the detection method would be crucial to discriminate between SARS-CoV-2 and influenza virus-infected patients. In this study, CRISPR-Cas12a-based detection was applied for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus which would be a practical and attractive application for screening of patients with COVID-19 and influenza in areas with limited resources. The limit of detection for SARS-CoV-2, influenza A, and influenza B detection was 10, 103, and 103 copies/reaction, respectively. Moreover, the assays yielded no cross-reactivity against other respiratory viruses. The results revealed that the detection of influenza virus and SARS-CoV-2 by using RT-RPA and CRISPR-Cas12a technology reaches 96.23% sensitivity and 100% specificity for SARS-CoV-2 detection. The sensitivity for influenza virus A and B detections was 85.07% and 94.87%, respectively. In addition, the specificity for influenza virus A and B detections was approximately 96%. In conclusion, the RT-RPA with CRISPR-Cas12a assay was an effective method for the screening of influenza viruses and SARS-CoV-2 which could be applied to detect other infectious diseases in the future.


Subject(s)
COVID-19/diagnosis , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/diagnosis , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , SARS-CoV-2/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Limit of Detection , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...