Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 19(4): 822-836, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33403378

ABSTRACT

Thioglycosides are an important class of sugars, since they can be used as non-ionic biosurfactants, biomimetic glycosides, and building blocks for carbohydrate synthesis. Previously, Brønsted- or Lewis-acid-catalyzed dehydrative glycosylations between a 1-hydroxy sugar and a thiol have been reported to yield open-chain dithioacetal sugars as the major products instead of the desired thioglycosides. These dithioacetal sugars are by-products derived from the endocyclic bond cleavage of the thioglycosides. Herein, we report dehydrative glycosylation in water mediated by a Brønsted acid-surfactant combined catalyst (BASC). Glycosylations between 1-hydroxy furanosyl/pyranosyl sugars and primary, secondary, and tertiary aliphatic/aromatic thiols in the presence of dodecyl benzenesulfonic acid (DBSA) provided the thioglycoside products in moderate to good yields. Microwave irradiation led to improvements in the yields and a shortening of the reaction time. Remarkably, open-chain dithioacetal sugars were not detected in the DBSA-mediated glycosylations in water. This method is a simple, convenient, and rapid approach to produce a library of thioglycosides without the requirement of anhydrous conditions. Moreover, this work also provides an excellent example of complementary reactivity profiles of glycosylation in organic solvents and water.

SELECTION OF CITATIONS
SEARCH DETAIL
...