Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 24(3): 500-510, 2017 03.
Article in English | MEDLINE | ID: mdl-28186505

ABSTRACT

APO2L/TRAIL (TNF-related apoptosis-inducing ligand) induces death of tumor cells through two agonist receptors, TRAIL-R1 and TRAIL-R2. We demonstrate here that N-linked glycosylation (N-glyc) plays also an important regulatory role for TRAIL-R1-mediated and mouse TRAIL receptor (mTRAIL-R)-mediated apoptosis, but not for TRAIL-R2, which is devoid of N-glycans. Cells expressing N-glyc-defective mutants of TRAIL-R1 and mouse TRAIL-R were less sensitive to TRAIL than their wild-type counterparts. Defective apoptotic signaling by N-glyc-deficient TRAIL receptors was associated with lower TRAIL receptor aggregation and reduced DISC formation, but not with reduced TRAIL-binding affinity. Our results also indicate that TRAIL receptor N-glyc impacts immune evasion strategies. The cytomegalovirus (CMV) UL141 protein, which restricts cell-surface expression of human TRAIL death receptors, binds with significant higher affinity TRAIL-R1 lacking N-glyc, suggesting that this sugar modification may have evolved as a counterstrategy to prevent receptor inhibition by UL141. Altogether our findings demonstrate that N-glyc of TRAIL-R1 promotes TRAIL signaling and restricts virus-mediated inhibition.


Subject(s)
Apoptosis/drug effects , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/toxicity , Amino Acid Sequence , Animals , Cell Line , Cytomegalovirus/metabolism , Glycosylation , HCT116 Cells , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mutagenesis, Site-Directed , Nanoparticles/chemistry , Receptors, TNF-Related Apoptosis-Inducing Ligand/deficiency , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Sequence Alignment , Tunicamycin/toxicity , Viral Proteins/genetics , Viral Proteins/metabolism
2.
Oncotarget ; 8(6): 9974-9985, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28039489

ABSTRACT

TRAIL induces selective tumor cell death through TRAIL-R1 and TRAIL-R2. Despite the fact that these receptors share high structural homologies, induction of apoptosis upon ER stress, cell autonomous motility and invasion have solely been described to occur through TRAIL-R2. Using the TALEN gene-editing approach, we show that TRAIL-R1 can also induce apoptosis during unresolved unfolded protein response (UPR). Likewise, TRAIL-R1 was found to co-immunoprecipitate with FADD and caspase-8 during ER stress. Its deficiency conferred resistance to apoptosis induced by thaspigargin, tunicamycin or brefeldin A. Our data also demonstrate that tumor cell motility and invasion-induced by TRAIL-R2 is not cell autonomous but induced in a TRAIL-dependant manner. TRAIL-R1, on the other hand, is unable to trigger cell migration owing to its inability to induce an increase in calcium flux. Importantly, all the isogenic cell lines generated in this study revealed that apoptosis induced TRAIL is preferentially induced by TRAIL-R1. Taken together, our results provide novel insights into the physiological functions of TRAIL-R1 and TRAIL-R2 and suggest that targeting TRAIL-R1 for anticancer therapy is likely to be more appropriate owing to its lack of pro-motile signaling capability.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , Colonic Neoplasms/drug therapy , Endoplasmic Reticulum Stress/drug effects , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CHO Cells , Calcium Signaling/drug effects , Caspase 8/metabolism , Cell Movement/drug effects , Chick Embryo , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cricetulus , Dose-Response Relationship, Drug , Fas-Associated Death Domain Protein/metabolism , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Signal Transduction/drug effects , Time Factors , Transfection
3.
Carbohydr Res ; 415: 31-8, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26279524

ABSTRACT

The parasitic life cycle of Leishmania includes an extracellular promastigote stage that occurs in the gut of the insect vector. During that period, the sucrose metabolism and more specifically the first glycosidase of this pathway are essential for growth and survival of the parasite. We investigated the expression of the invertase BfrA in the promastigote and amastigote stages of three parasite species representative of the three various clinical forms and of various geographical areas, namely Leishmania major, L. donovani and L. braziliensis. Thereafter, we cloned, overexpressed and biochemically characterized this invertase BfrA from L. major, heterologously expressed in both Escherichia coli and L. tarentolae. For all species, expression levels of BfrA mRNA were correlated to the time of the culture and the parasitic stage (promastigotes > amastigotes). BfrA exhibited no activity when expressed as a glycoprotein in L. tarentolae but proved to be an invertase when not glycosylated, yet owing low sequence homology with other invertases from the same family. Our data suggest that BfrA is an original invertase that is located inside the parasite. It is expressed in both parasitic stages, though to a higher extent in promastigotes. This work provides new insight into the parasite sucrose metabolism.


Subject(s)
Leishmania major/enzymology , RNA, Messenger/metabolism , beta-Fructofuranosidase/chemistry , beta-Fructofuranosidase/metabolism , Animals , Escherichia coli , Insecta/parasitology , Leishmania braziliensis/metabolism , Leishmania donovani/metabolism , Leishmania major/metabolism , Models, Molecular , Sequence Analysis, DNA , Sucrose/metabolism , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/isolation & purification
5.
Nano Lett ; 15(2): 891-5, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25584433

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) is a member of the tumor necrosis factor (TNF) superfamily. This type II transmembrane protein is able to bound specifically to cancer cell receptors (i.e., TRAIL-R1 (or DR4) and TRAIL-R2 (or DR5)) and to induce apoptosis without being toxic for healthy cells. Because membrane-bound TRAIL induces stronger receptor aggregation and apoptosis than soluble TRAIL, we proposed here to vectorize TRAIL using single-walled carbon nanotubes (SWCNTs) to mimic membrane TRAIL. Owing to their exceptional and revolutional properties, carbon nanotubes, especially SWCNTs, are used in a wide range of physical or, now, medical applications. Indeed due to their high mechanical resistance, their high flexibility and their hydrophobicity, SWCNTs are known to rapidly diffuse in an aqueous medium such as blood, opening the way of development of new drug nanovectors (or nanocarriers). Our TRAIL-based SWCNTs nanovectors proved to be more efficient than TRAIL alone death receptors in triggering cancer cell killing. These NPTs increased TRAIL pro-apoptotic potential by nearly 20-fold in different Human tumor cell lines including colorectal, nonsmall cell lung cancer, or hepatocarcinomas. We provide thus a proof-of-concept that TRAIL nanovector derivatives based on SWCNT may be useful to future nanomedicine therapies.


Subject(s)
Nanotubes, Carbon , Neoplasms/pathology , TNF-Related Apoptosis-Inducing Ligand/chemistry , Cell Line, Tumor , Humans , Microscopy, Electron, Transmission , Nanotubes, Carbon/chemistry , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...