Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Diabetologia ; 65(1): 216-225, 2022 01.
Article in English | MEDLINE | ID: mdl-34590175

ABSTRACT

AIMS/HYPOTHESIS: Microvascular blood flow (MBF) increases in skeletal muscle postprandially to aid in glucose delivery and uptake in muscle. This vascular action is impaired in individuals who are obese or have type 2 diabetes. Whether MBF is impaired in normoglycaemic people at risk of type 2 diabetes is unknown. We aimed to determine whether apparently healthy people at risk of type 2 diabetes display impaired skeletal muscle microvascular responses to a mixed-nutrient meal. METHODS: In this cross-sectional study, participants with no family history of type 2 diabetes (FH-) for two generations (n = 18), participants with a positive family history of type 2 diabetes (FH+; i.e. a parent with type 2 diabetes; n = 16) and those with type 2 diabetes (n = 12) underwent a mixed meal challenge (MMC). Metabolic responses (blood glucose, plasma insulin and indirect calorimetry) were measured before and during the MMC. Skeletal muscle large artery haemodynamics (2D and Doppler ultrasound, and Mobil-O-graph) and microvascular responses (contrast-enhanced ultrasound) were measured at baseline and 1 h post MMC. RESULTS: Despite normal blood glucose concentrations, FH+ individuals displayed impaired metabolic flexibility (reduced ability to switch from fat to carbohydrate oxidation vs FH-; p < 0.05) during the MMC. The MMC increased forearm muscle microvascular blood volume in both the FH- (1.3-fold, p < 0.01) and FH+ (1.3-fold, p < 0.05) groups but not in participants with type 2 diabetes. However, the MMC increased MBF (1.9-fold, p < 0.01), brachial artery diameter (1.1-fold, p < 0.01) and brachial artery blood flow (1.7-fold, p < 0.001) and reduced vascular resistance (0.7-fold, p < 0.001) only in FH- participants, with these changes being absent in FH+ and type 2 diabetes. Participants with type 2 diabetes displayed significantly higher vascular stiffness (p < 0.001) compared with those in the FH- and FH+ groups; however, vascular stiffness did not change during the MMC in any participant group. CONCLUSIONS/INTERPRETATION: Normoglycaemic FH+ participants display impaired postprandial skeletal muscle macro- and microvascular responses, suggesting that poor vascular responses to a meal may contribute to their increased risk of type 2 diabetes. We conclude that vascular insulin resistance may be an early precursor to type 2 diabetes in humans, which can be revealed using an MMC.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Blood Glucose/metabolism , Cross-Sectional Studies , Diabetes Mellitus, Type 2/metabolism , Humans , Insulin/metabolism , Muscle, Skeletal/metabolism , Parents , Postprandial Period
3.
Clin Exp Pharmacol Physiol ; 47(4): 725-737, 2020 04.
Article in English | MEDLINE | ID: mdl-31868941

ABSTRACT

Skeletal muscle contributes to ~40% of total body mass and has numerous important mechanical and metabolic roles in the body. Skeletal muscle is a major site for glucose disposal following a meal. Consequently, skeletal muscle plays an important role in postprandial blood glucose homeostasis. Over the past number of decades, research has demonstrated that insulin has an important role in vasodilating the vasculature in skeletal muscle in response to an insulin infusion (hyperinsulinaemic-euglycaemic clamp) or following the ingestion of a meal. This vascular action of insulin is pivotal for glucose disposal in skeletal muscle, as insulin-stimulated vasodilation increases the delivery of both glucose and insulin to the myocyte. Notably, in insulin-resistant states such as obesity and type 2 diabetes, this vascular response of insulin in skeletal muscle is significantly impaired. Whereas the majority of work in this field has focussed on the action of insulin alone on skeletal muscle microvascular blood flow and myocyte glucose metabolism, there is less understanding of how the consumption of a meal may affect skeletal muscle blood flow. This is in part due to complex variations in glucose and insulin dynamics that occurs postprandially-with changes in humoral concentrations of glucose, insulin, amino acids, gut and pancreatic peptides-compared to the hyperinsulinaemic-euglycaemic clamp. This review will address the emerging body of evidence to suggest that postprandial blood flow responses in skeletal muscle may be a function of the nutritional composition of a meal.


Subject(s)
Glucose Clamp Technique , Hyperinsulinism/physiopathology , Microcirculation , Muscle, Skeletal/physiopathology , Postprandial Period , Animals , Humans , Hyperinsulinism/blood
4.
J Endocrinol ; 243(2): 85-96, 2019 11.
Article in English | MEDLINE | ID: mdl-31394501

ABSTRACT

Insulin stimulates glucose disposal in skeletal muscle in part by increasing microvascular blood flow, and this effect is blunted during insulin resistance. We aimed to determine whether metformin treatment improves insulin-mediated glucose disposal and vascular insulin responsiveness in skeletal muscle of insulin-resistant rats. Sprague-Dawley rats were fed a normal (ND) or high-fat (HFD) diet for 4 weeks. A separate HFD group was given metformin in drinking water (HFD + MF, 150 mg/kg/day) during the final 2 weeks. After the intervention, overnight-fasted (food and metformin removed) anaesthetised rats underwent a 2-h euglycaemic-hyperinsulinaemic clamp (10 mU/min/kg) or saline infusion. Femoral artery blood flow, hindleg muscle microvascular blood flow, muscle glucose disposal and muscle signalling (Ser473-AKT and Thr172-AMPK phosphorylation) were measured. HFD rats had elevated body weight, epididymal fat pad weight, fasting plasma insulin and free fatty acid levels when compared to ND. HFD-fed animals displayed whole-body and skeletal muscle insulin resistance and blunting of insulin-stimulated femoral artery blood flow, muscle microvascular blood flow and skeletal muscle insulin-stimulated Ser473-AKT phosphorylation. Metformin treatment of HFD rats reduced fasting insulin and free fatty acid concentrations and lowered body weight and adiposity. During euglycaemic-hyperinsulinaemic clamp, metformin-treated animals showed improved vascular responsiveness to insulin, improved insulin-stimulated muscle Ser473-AKT phosphorylation but only partially restored (60%) muscle glucose uptake. This occurred without any detectable levels of metformin in plasma or change in muscle Thr172-AMPK phosphorylation. We conclude that 2-week metformin treatment is effective at improving vascular and metabolic insulin responsiveness in muscle of HFD-induced insulin-resistant rats.


Subject(s)
Femoral Artery/drug effects , Insulin/metabolism , Metformin/pharmacology , Muscle, Skeletal/drug effects , Animals , Blood Flow Velocity/drug effects , Blood Glucose/metabolism , Body Weight/drug effects , Diet, High-Fat/adverse effects , Femoral Artery/physiology , Glucose/metabolism , Glucose Clamp Technique , Hyperinsulinism/blood , Hyperinsulinism/etiology , Hyperinsulinism/physiopathology , Insulin Resistance , Male , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Rats, Sprague-Dawley
5.
Cardiovasc Res ; 115(3): 590-601, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30192915

ABSTRACT

AIMS: Angiotensin II (AngII) is a potent vasoconstrictor implicated in both hypertension and insulin resistance. Insulin dilates the vasculature in skeletal muscle to increase microvascular blood flow and enhance glucose disposal. In the present study, we investigated whether acute AngII infusion interferes with insulin's microvascular and metabolic actions in skeletal muscle. METHODS AND RESULTS: Adult, male Sprague-Dawley rats received a systemic infusion of either saline, AngII, insulin (hyperinsulinaemic euglycaemic clamp), or insulin (hyperinsulinaemic euglycaemic clamp) plus AngII. A final, separate group of rats received an acute local infusion of AngII into a single hindleg during systemic insulin (hyperinsulinaemic euglycaemic clamp) infusion. In all animals' systemic metabolic effects, central haemodynamics, femoral artery blood flow, microvascular blood flow, and skeletal muscle glucose uptake (isotopic glucose) were monitored. Systemic AngII infusion increased blood pressure, decreased heart rate, and markedly increased circulating glucose and insulin concentrations. Systemic infusion of AngII during hyperinsulinaemic euglycaemic clamp inhibited insulin-mediated suppression of hepatic glucose output and insulin-stimulated microvascular blood flow in skeletal muscle but did not alter insulin's effects on the femoral artery or muscle glucose uptake. Local AngII infusion did not alter blood pressure, heart rate, or circulating glucose and insulin. However, local AngII inhibited insulin-stimulated microvascular blood flow, and this was accompanied by reduced skeletal muscle glucose uptake. CONCLUSIONS: Acute infusion of AngII significantly alters basal haemodynamic and metabolic homeostasis in rats. Both local and systemic AngII infusion attenuated insulin's microvascular actions in skeletal muscle, but only local AngII infusion led to reduced insulin-stimulated muscle glucose uptake. While increased local, tissue production of AngII may be a factor that couples microvascular insulin resistance and hypertension, additional studies are needed to determine the molecular mechanisms responsible for these vascular defects.


Subject(s)
Angiotensin II/administration & dosage , Blood Glucose/drug effects , Energy Metabolism/drug effects , Hemodynamics/drug effects , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Microcirculation/drug effects , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Vasoconstrictor Agents/administration & dosage , Animals , Blood Glucose/metabolism , Infusions, Intra-Arterial , Infusions, Intravenous , Insulin Resistance , Liver/drug effects , Liver/metabolism , Male , Muscle, Skeletal/metabolism , Rats, Sprague-Dawley , Time Factors
6.
Am J Physiol Endocrinol Metab ; 315(6): E1242-E1250, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30351988

ABSTRACT

The microcirculation in adipose tissue is markedly impaired in type 2 diabetes (T2D). Resistance training (RT) often increases muscle mass and promotes a favorable metabolic profile in people with T2D, even in the absence of fat loss. Whether the metabolic benefits of RT in T2D are linked to improvements in adipose tissue microvascular blood flow is unknown. Eighteen sedentary people with T2D (7 women/11 men, 52 ± 7 yr) completed 6 wk of RT. Before and after RT, overnight-fasted participants had blood sampled for clinical chemistries (glucose, insulin, lipids, HbA1c, and proinflammatory markers) and underwent an oral glucose challenge (OGC; 50 g glucose × 2 h) and a DEXA scan to assess body composition. Adipose tissue microvascular blood volume and flow were assessed at rest and 1 h post-OGC using contrast-enhanced ultrasound. RT significantly reduced fasting blood glucose ( P = 0.006), HbA1c ( P = 0.007), 2-h glucose area under the time curve post-OGC ( P = 0.014), and homeostatic model assessment of insulin resistance ( P = 0.005). This was accompanied by a small reduction in total body fat ( P = 0.002), trunk fat ( P = 0.023), and fasting triglyceride levels ( P = 0.029). Lean mass ( P = 0.003), circulating TNF-α ( P = 0.006), and soluble VCAM-1 ( P < 0.001) increased post-RT. There were no significant changes in adipose tissue microvascular blood volume or flow following RT; however those who did have a higher baseline microvascular blood flow post-RT also had lower fasting triglyceride levels ( r = -0.476, P = 0.045). The anthropometric, glycemic, and insulin-sensitizing benefits of 6 wk of RT in people with T2D are not associated with an improvement in adipose tissue microvascular responses; however, there may be an adipose tissue microvascular-linked benefit to fasting triglyceride levels.


Subject(s)
Adipose Tissue/blood supply , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Microvessels/physiology , Regional Blood Flow/physiology , Resistance Training , Absorptiometry, Photon , Blood Glucose/metabolism , Body Composition , Female , Humans , Insulin Resistance/physiology , Male , Middle Aged
7.
Eur J Appl Physiol ; 118(11): 2455-2463, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30159685

ABSTRACT

PURPOSE: It is widely thought that excess pulsatile pressure from increased stiffness of large central arteries (macro-vasculature) is transmitted to capillary networks (micro-vasculature) and causes target organ damage. However, this hypothesis has never been tested. We sought to examine the association between macro- and micro-vasculature waveform features in patients with type 2 diabetes (i.e., those with elevated stiffness; T2D) compared with non-diabetic controls. METHODS: Among 13 T2D (68 ± 6 years, 39% male) and 15 controls (58 ± 11 years, 40% male) macro-vascular stiffness was determined via aortic pulse wave velocity (aPWV) and macro-vascular waveforms were measured using radial tonometry. Forearm micro-vascular waveforms were measured simultaneously with macro-vascular waveforms via low power laser Doppler fluxmetry. Augmentation index (AIx) was derived on macro- and micro-vascular waveforms. Target organ damage was assessed by estimated glomerular filtration rate (eGFR) and central retinal artery equivalent (CRAE). RESULTS: aPWV was higher among T2D (9.3 ± 2.5 vs 7.5 ± 1.4 m/s, p = 0.046). There was an obvious pulsatile micro-vascular waveform with qualitative features similar to macro-vasculature pressure waveforms. In all subjects, macro- and micro-vasculature AIx were significantly related (r = 0.43, p = 0.005). In T2D alone, micro-vasculature AIx was associated with eGFR (r = - 0.63, p = 0.037), whereas in controls, macro-vasculature AIx and AP were associated with CRAE (r = - 0.58, p = 0.025 and r = - 0.61, p = 0.015). CONCLUSIONS: Macro- and micro-vasculature waveform features are related; however, micro-vasculature features are more closely related to markers of target organ damage in T2D. These findings are suggestive of a possible interaction between the macro- and micro-circulation.


Subject(s)
Aorta/physiopathology , Blood Pressure/physiology , Diabetes Mellitus, Type 2/physiopathology , Microvessels/physiopathology , Vascular Stiffness/physiology , Aged , Female , Forearm/blood supply , Glomerular Filtration Rate/physiology , Humans , Male , Manometry , Middle Aged , Pulse Wave Analysis
8.
Am J Physiol Endocrinol Metab ; 315(2): E307-E315, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29763373

ABSTRACT

Skeletal muscle microvascular (capillary) blood flow increases in the postprandial state or during insulin infusion due to dilation of precapillary arterioles to augment glucose disposal. This effect occurs independently of changes in large artery function. However, acute hyperglycemia impairs vascular function, causes insulin to vasoconstrict precapillary arterioles, and causes muscle insulin resistance in vivo. We hypothesized that acute hyperglycemia impairs postprandial muscle microvascular perfusion, without disrupting normal large artery hemodynamics, in healthy humans. Fifteen healthy people (5 F/10 M) underwent an oral glucose challenge (OGC, 50 g glucose) and a mixed-meal challenge (MMC) on two separate occasions (randomized, crossover design). At 1 h, both challenges produced a comparable increase (6-fold) in plasma insulin levels. However, the OGC produced a 1.5-fold higher increase in blood glucose compared with the MMC 1 h postingestion. Forearm muscle microvascular blood volume and flow (contrast-enhanced ultrasound) were increased during the MMC (1.3- and 1.9-fold from baseline, respectively, P < 0.05 for both) but decreased during the OGC (0.7- and 0.6-fold from baseline, respectively, P < 0.05 for both) despite a similar hyperinsulinemia. Both challenges stimulated brachial artery flow (ultrasound) and heart rate to a similar extent, as well as yielding comparable decreases in diastolic blood pressure and total vascular resistance. Systolic blood pressure and aortic stiffness remained unaltered by either challenge. Independently of large artery hemodynamics, hyperglycemia impairs muscle microvascular blood flow, potentially limiting glucose disposal into skeletal muscle. The OGC reduced microvascular blood flow in muscle peripherally and therefore may underestimate the importance of skeletal muscle in postprandial glucose disposal.


Subject(s)
Glucose/pharmacology , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Administration, Oral , Adolescent , Adult , Arteries/drug effects , Blood Pressure/drug effects , Cross-Sectional Studies , Female , Forearm/blood supply , Healthy Volunteers , Heart Rate/drug effects , Humans , Hyperglycemia/metabolism , Hyperglycemia/physiopathology , Hyperinsulinism/blood , Male , Microcirculation/drug effects , Middle Aged , Regional Blood Flow/drug effects , Vascular Resistance/drug effects , Young Adult
9.
Circ Cardiovasc Imaging ; 11(4): e007074, 2018 04.
Article in English | MEDLINE | ID: mdl-29650791

ABSTRACT

BACKGROUND: In obesity and type 2 diabetes mellitus (T2D), adipose tissue expansion (because of larger adipocytes) results in reduced microvascular density which is thought to lead to adipocyte hypoxia, inflammation, and reduced nutrient delivery to the adipocyte. Adipose tissue microvascular responses in humans with T2D have not been extensively characterized. Furthermore, it has not been determined whether impaired microvascular responses in human adipose tissue are most closely associated with adiposity, inflammation, or altered metabolism. METHODS AND RESULTS: Overnight-fasted healthy controls (n=24, 9 females/15 males) and people with T2D (n=21, 8 females/13 males) underwent a body composition scan (dual-energy X-ray absorptiometry), an oral glucose challenge (50 g glucose) and blood analysis of clinical chemistries and inflammatory markers. Abdominal subcutaneous adipose tissue microvascular responses were measured by contrast-enhanced ultrasound at baseline and 1-hour post-oral glucose challenge. Adipose tissue microvascular blood volume was significantly elevated in healthy subjects 1-hour post-oral glucose challenge; however, this effect was absent in T2D. Adipose tissue microvascular blood flow was lower in people with T2D at baseline and was significantly blunted post-oral glucose challenge compared with controls. Adipose tissue microvascular blood flow was negatively associated with truncal fat (%), glucoregulatory function, fasting triglyceride and nonesterified fatty acid levels, and positively associated with insulin sensitivity. Truncal fat (%), systolic blood pressure, and insulin sensitivity were the only correlates with microvascular blood volume. Systemic inflammation was not associated with adipose tissue microvascular responses. CONCLUSIONS: Impaired microvascular function in adipose tissue during T2D is not conditionally linked to systemic inflammation but is associated with other characteristics of the metabolic syndrome (obesity, insulin resistance, hyperglycemia, and dyslipidemia).


Subject(s)
Adipose Tissue/blood supply , Adipose Tissue/diagnostic imaging , Diabetes Mellitus, Type 2/blood , Microcirculation , Ultrasonography/methods , Absorptiometry, Photon , Adult , Biomarkers/blood , Body Composition , Contrast Media , Female , Humans , Male , Middle Aged
10.
J Physiol ; 595(24): 7427-7439, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29071734

ABSTRACT

KEY POINTS: People with insulin resistance or type 2 diabetes can substantially increase their skeletal muscle glucose uptake during exercise and insulin sensitivity after exercise. Skeletal muscle nitric oxide (NO) is important for glucose uptake during exercise, although how prior exercise increases insulin sensitivity is unclear. In the present study, we examined whether NO is necessary for normal increases in skeletal muscle insulin sensitivity after contraction ex vivo in mouse muscle. The present study uncovers, for the first time, a novel role for NO in the insulin sensitizing effects of ex vivo contraction, which is independent of blood flow. ABSTRACT: The factors regulating the increase in skeletal muscle insulin sensitivity after exercise are unclear. We examined whether nitric oxide (NO) is required for the increase in insulin sensitivity after ex vivo contractions. Isolated C57BL/6J mouse EDL muscles were contracted for 10 min or remained at rest (basal) with or without the NO synthase (NOS) inhibition (NG -monomethyl-l-arginine; l-NMMA; 100 µm). Then, 3.5 h post contraction/basal, muscles were exposed to saline or insulin (120 µU ml-1 ) with or without l-NMMA during the last 30 min. l-NMMA had no effect on basal skeletal muscle glucose uptake. The increase in muscle glucose uptake with insulin (57%) was significantly (P < 0.05) greater after prior contraction (140% increase). NOS inhibition during the contractions had no effect on this insulin-sensitizing effect of contraction, whereas NOS inhibition during insulin prevented the increase in skeletal muscle insulin sensitivity post-contraction. Soluble guanylate cyclase inhibition, protein kinase G (PKG) inhibition or cyclic nucleotide phosphodiesterase inhibition each had no effect on the insulin-sensitizing effect of prior contraction. In conclusion, NO is required for increases in insulin sensitivity several hours after contraction of mouse skeletal muscle via a cGMP/PKG independent pathway.


Subject(s)
Insulin/metabolism , Muscle Contraction , Muscle Fibers, Skeletal/metabolism , Nitric Oxide/metabolism , 2',3'-Cyclic-Nucleotide Phosphodiesterases/antagonists & inhibitors , Animals , Cells, Cultured , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Glucose/metabolism , Guanylate Cyclase/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/physiology , Nitric Oxide Synthase/antagonists & inhibitors , Signal Transduction , omega-N-Methylarginine/pharmacology
11.
Diabetes Care ; 40(9): 1256-1263, 2017 09.
Article in English | MEDLINE | ID: mdl-28687542

ABSTRACT

OBJECTIVE: Insulin increases glucose disposal in part by enhancing microvascular blood flow (MBF) and substrate delivery to myocytes. Insulin's microvascular action is impaired with insulin resistance and type 2 diabetes. Resistance training (RT) improves glycemic control and insulin sensitivity, but whether this improvement is linked to augmented skeletal muscle microvascular responses in type 2 diabetes is unknown. RESEARCH DESIGN AND METHODS: Seventeen (11 male and 6 female; 52 ± 2 years old) sedentary patients with type 2 diabetes underwent 6 weeks of whole-body RT. Before and after RT, participants who fasted overnight had clinical chemistries measured (lipids, glucose, HbA1c, insulin, and advanced glycation end products) and underwent an oral glucose challenge (OGC) (50 g × 2 h). Forearm muscle MBF was assessed by contrast-enhanced ultrasound, skin MBF by laser Doppler flowmetry, and brachial artery flow by Doppler ultrasound at baseline and 60 min post-OGC. A whole-body DEXA scan before and after RT assessed body composition. RESULTS: After RT, muscle MBF response to the OGC increased, while skin microvascular responses were unchanged. These microvascular adaptations were accompanied by improved glycemic control (fasting blood glucose, HbA1c, and glucose area under the curve [AUC] during OGC) and increased lean body mass and reductions in fasting plasma triglyceride, total cholesterol, advanced glycation end products, and total body fat. Changes in muscle MBF response after RT significantly correlated with reductions in fasting blood glucose, HbA1c, and OGC AUC with adjustment for age, sex, % body fat, and % lean mass. CONCLUSIONS: RT improves OGC-stimulated muscle MBF and glycemic control concomitantly, suggesting that MBF plays a role in improved glycemic control from RT.


Subject(s)
Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/therapy , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Resistance Training , Adiposity , Anthropometry , Blood Glucose/analysis , Body Composition , Brachial Artery/metabolism , Cholesterol/blood , Diet , Female , Glycated Hemoglobin/analysis , Glycation End Products, Advanced/blood , Humans , Insulin/blood , Insulin Resistance , Male , Middle Aged , Nutrition Assessment , Sedentary Behavior , Triglycerides/blood
12.
Ultrasound Med Biol ; 43(9): 2013-2023, 2017 09.
Article in English | MEDLINE | ID: mdl-28655467

ABSTRACT

Most methods of assessing flowmotion (rhythmic oscillation of blood flow through tissue) are limited to small sections of tissue and are invasive in tissues other than skin. To overcome these limitations, we adapted the contrast-enhanced ultrasound (CEUS) technique to assess microvascular flowmotion throughout a large region of tissue, in a non-invasive manner and in real time. Skeletal muscle flowmotion was assessed in anaesthetised Sprague Dawley rats, using CEUS and laser Doppler flowmetry (LDF) for comparison. Wavelet transformation of CEUS and LDF data was used to quantify flowmotion. The α-adrenoceptor antagonist phentolamine was infused to predictably blunt the neurogenic component of flowmotion. Both techniques identified similar flowmotion patterns, validating the use of CEUS to assess flowmotion. This study demonstrates for the first time that the novel technique of CEUS can be adapted for determination of skeletal muscle flowmotion in large regions of skeletal muscle.


Subject(s)
Contrast Media , Image Enhancement/methods , Microcirculation , Muscle, Skeletal/blood supply , Muscle, Skeletal/diagnostic imaging , Ultrasonography/methods , Animals , Male , Models, Animal , Muscle, Skeletal/physiology , Rats , Rats, Sprague-Dawley
13.
Diabetes ; 66(6): 1501-1510, 2017 06.
Article in English | MEDLINE | ID: mdl-28292969

ABSTRACT

Insulin resistance is a major health risk, and although exercise clearly improves skeletal muscle insulin sensitivity, the mechanisms are unclear. Here we show that initiation of a euglycemic-hyperinsulinemic clamp 4 h after single-legged exercise in humans increased microvascular perfusion (determined by contrast-enhanced ultrasound) by 65% in the exercised leg and 25% in the rested leg (P < 0.05) and that leg glucose uptake increased 50% more (P < 0.05) in the exercised leg than in the rested leg. Importantly, infusion of the nitric oxide synthase inhibitor l-NG-monomethyl-l-arginine acetate (l-NMMA) into both femoral arteries reversed the insulin-stimulated increase in microvascular perfusion in both legs and abrogated the greater glucose uptake in the exercised compared with the rested leg. Skeletal muscle phosphorylation of TBC1D4 Ser318 and Ser704 and glycogen synthase activity were greater in the exercised leg before insulin and increased similarly in both legs during the clamp, and l-NMMA had no effect on these insulin-stimulated signaling pathways. Therefore, acute exercise increases insulin sensitivity of muscle by a coordinated increase in insulin-stimulated microvascular perfusion and molecular signaling at the level of TBC1D4 and glycogen synthase in muscle. This secures improved glucose delivery on the one hand and increased ability to take up and dispose of the delivered glucose on the other hand.


Subject(s)
Exercise/physiology , Glucose/metabolism , Insulin Resistance , Microvessels/physiology , Muscle, Skeletal/metabolism , Adult , Contrast Media , Enzyme Inhibitors/pharmacology , Femoral Artery , GTPase-Activating Proteins/metabolism , Glucose Clamp Technique , Glycogen Synthase/metabolism , Healthy Volunteers , Humans , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Leg , Male , Microvessels/drug effects , Muscle, Skeletal/blood supply , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/drug effects , Nitric Oxide Synthase/antagonists & inhibitors , Phosphorylation , Signal Transduction , Ultrasonography , Young Adult , omega-N-Methylarginine/pharmacology
14.
J Nutr Biochem ; 40: 23-31, 2017 02.
Article in English | MEDLINE | ID: mdl-27837678

ABSTRACT

Epidemiological studies show a dose-dependent relationship between green tea consumption and reduced risk for type 2 diabetes and cardiovascular disease. Bioactive compounds in green tea including the polyphenol epigallocatechin 3-gallate (EGCG) have insulin-mimetic actions on glucose metabolism and vascular function in isolated cell culture studies. The aim of this study is to explore acute vascular and metabolic actions of EGCG in skeletal muscle of Sprague-Dawley rats. Direct vascular and metabolic actions of EGCG were investigated using surgically isolated constant-flow perfused rat hindlimbs. EGCG infused at 0.1, 1, 10 and 100 µM in 15 min step-wise increments caused dose-dependent vasodilation in 5-hydroxytryptamine pre-constricted hindlimbs. This response was not impaired by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin or the AMP-kinase inhibitor Compound C. The nitric oxide synthase (NOS) inhibitor NG-Nitro-l-Arginine Methyl Ester (L-NAME) completely blocked EGCG-mediated vasodilation at 0.1-10 µM, but not at 100 µM. EGCG at 10 µM did not alter muscle glucose uptake nor did it augment insulin-stimulated muscle glucose uptake. The acute metabolic and vascular actions of 10 µM EGCG in vivo were investigated in anaesthetised rats during a hyperinsulinemic-euglycemic clamp (10 mU min-1 kg-1 insulin). EGCG and insulin both stimulated comparable increases in muscle microvascular blood flow without an additive effect. EGCG-mediated microvascular action occurred without altering whole body or muscle glucose uptake. We concluded that EGCG has direct NOS-dependent vasodilator actions in skeletal muscle that do not acutely alter muscle glucose uptake or enhance the vascular and metabolic actions of insulin in healthy rats.


Subject(s)
Catechin/analogs & derivatives , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Animals , Catechin/administration & dosage , Catechin/pharmacology , Dose-Response Relationship, Drug , Glucose/metabolism , Hindlimb/blood supply , Hindlimb/drug effects , Insulin/pharmacology , Male , Muscle, Skeletal/blood supply , NG-Nitroarginine Methyl Ester/pharmacology , Organ Culture Techniques , Perfusion , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Serotonin/pharmacology , Vasodilation/drug effects
15.
Clin Exp Pharmacol Physiol ; 44(1): 143-149, 2017 01.
Article in English | MEDLINE | ID: mdl-27797410

ABSTRACT

Skeletal muscle is an important site for insulin to regulate blood glucose levels. It is estimated that skeletal muscle is responsible for ~80% of insulin-mediated glucose disposal in the post-prandial period. The classical action of insulin to increase muscle glucose uptake involves insulin binding to insulin receptors on myocytes to stimulate glucose transporter 4 (GLUT 4) translocation to the cell surface membrane, enhancing glucose uptake. However, an additional role of insulin that is often under-appreciated is its action to increase muscle perfusion thereby improving insulin and glucose delivery to myocytes. Either of these responses (myocyte and/or vascular) may be impaired in insulin resistance, and both impairments are apparent in type 2 diabetes, resulting in diminished glucose disposal by muscle. The aim of this review is to report on the growing body of literature suggesting that insulin-mediated control of skeletal muscle perfusion is an important regulator of muscle glucose uptake and that impairment of microvascular insulin action has important physiological consequences early in the pathogenesis of insulin resistance. This work was discussed at the 2015 Australian Physiological Society Symposium "Physiological mechanisms controlling microvascular flow and muscle metabolism".


Subject(s)
Insulin Resistance/physiology , Microcirculation/physiology , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Regional Blood Flow/physiology , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Humans
16.
J Physiol ; 594(8): 2223-31, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-25581640

ABSTRACT

Insulin resistance plays a key role in the development of type 2 diabetes. Skeletal muscle is the major storage site for glucose following a meal and as such has a key role in maintenance of blood glucose concentrations. Insulin resistance is characterised by impaired insulin-mediated glucose disposal in skeletal muscle. Multiple mechanisms can contribute to development of muscle insulin resistance and our research has demonstrated an important role for loss of microvascular function within skeletal muscle. We have shown that insulin can enhance blood flow to the microvasculature in muscle thus improving the access of glucose and insulin to the myocytes to augment glucose disposal. Obesity, insulin resistance and ageing are all associated with impaired microvascular responses to insulin in skeletal muscle. Impairments in insulin-mediated microvascular perfusion in muscle can directly cause insulin resistance, and this event can occur early in the aetiology of this condition. Understanding the mechanisms involved in the loss of microvascular function in muscle has the potential to identify novel treatment strategies to prevent or delay progression of insulin resistance and type 2 diabetes.


Subject(s)
Aging/metabolism , Insulin Resistance , Microvessels/metabolism , Muscle, Skeletal/blood supply , Aging/physiology , Animals , Humans , Microcirculation , Microvessels/physiology , Muscle, Skeletal/metabolism
17.
Cardiovasc Diabetol ; 14: 91, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26194188

ABSTRACT

BACKGROUND: Insulin-induced microvascular recruitment is important for optimal muscle glucose uptake. 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR, an activator of AMP-activated protein kinase), can also induce microvascular recruitment, at doses that do not acutely activate glucose transport in rat muscle. Whether low doses of AICAR can augment physiologic insulin action is unknown. In the present study we used the euglycemic hyperinsulinemic clamp to assess whether insulin action is augmented by low dose AICAR. METHODS: Anesthetized rats were studied during saline infusion or euglycemic insulin (3 mU/kg/min) clamp for 2 h in the absence or presence of AICAR for the last hour (5 mg bolus followed by 3.75 mg/kg/min). Muscle glucose uptake (R'g) was determined radioisotopically with (14)C-2-deoxyglucose and muscle microvascular perfusion by contrast-enhanced ultrasound with microbubbles. RESULTS: AICAR did not affect blood glucose, or lower leg R'g, although it significantly (p < 0.05) increased blood lactate levels and augmented muscle microvascular blood volume via a nitric oxide synthase dependent pathway. Insulin increased femoral blood flow, whole body glucose infusion rate (GIR), R'g, hindleg glucose uptake, and microvascular blood volume. Addition of AICAR during insulin infusion increased lactate production, further increased R'g in Type IIA (fast twitch oxidative) and IIB (fast twitch glycolytic) fiber containing muscles, and hindleg glucose uptake, but decreased R'g in the Type I (slow twitch oxidative) fiber muscle. AICAR also decreased GIR due to inhibition of insulin-mediated suppression of hepatic glucose output. AICAR augmented insulin-mediated microvascular perfusion. CONCLUSIONS: AICAR, at levels that have no direct effect on muscle glucose uptake, augments insulin-mediated microvascular blood flow and glucose uptake in white fiber type muscles. Agents targeted to endothelial AMPK activation are promising insulin sensitizers, however, the decrease in GIR and the propensity to increase blood lactate cautions against AICAR as an acute insulin sensitizer.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Deoxyglucose/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Microcirculation/drug effects , Microvessels/drug effects , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Ribonucleotides/pharmacology , Aminoimidazole Carboxamide/pharmacology , Animals , Blood Flow Velocity , Contrast Media , Femoral Artery/drug effects , Femoral Artery/physiology , Glucose Clamp Technique , Hindlimb , Lactic Acid/blood , Male , Microbubbles , Microvessels/diagnostic imaging , Microvessels/physiology , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/drug effects , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Nitric Oxide Synthase/metabolism , Rats, Wistar , Regional Blood Flow , Time Factors , Ultrasonography
18.
J Appl Physiol (1985) ; 118(9): 1113-21, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25749441

ABSTRACT

Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSµ (nNOSµ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSµ(-/-) and nNOSµ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSµ(-/-) and nNOSµ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSµ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSµ.


Subject(s)
Glucose/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Nitric Oxide Synthase Type I/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Arginine/metabolism , Biological Transport/drug effects , Biological Transport/physiology , Enzyme Inhibitors/pharmacology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Nitric Oxide/metabolism , Physical Conditioning, Animal/physiology , omega-N-Methylarginine/pharmacology
19.
Am J Physiol Regul Integr Comp Physiol ; 308(10): R862-71, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25786487

ABSTRACT

Nitric oxide (NO) has been shown to be involved in skeletal muscle glucose uptake during contraction/exercise, especially in individuals with Type 2 diabetes (T2D). To examine the potential mechanisms, we examined the effect of local NO synthase (NOS) inhibition on muscle glucose uptake and muscle capillary blood flow during contraction in healthy and T2D rats. T2D was induced in Sprague-Dawley rats using a combined high-fat diet (23% fat wt/wt for 4 wk) and low-dose streptozotocin injections (35 mg/kg). Anesthetized animals had one hindlimb stimulated to contract in situ for 30 min (2 Hz, 0.1 ms, 35 V) with the contralateral hindlimb rested. After 10 min, the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME; 5 µM) or saline was continuously infused into the femoral artery of the contracting hindlimb until the end of contraction. Surprisingly, there was no increase in skeletal muscle NOS activity during contraction in either group. Local NOS inhibition had no effect on systemic blood pressure or muscle contraction force, but it did cause a significant attenuation of the increase in femoral artery blood flow in control and T2D rats. However, NOS inhibition did not attenuate the increase in muscle capillary recruitment during contraction in these rats. Muscle glucose uptake during contraction was significantly higher in T2D rats compared with controls but, unlike our previous findings in hooded Wistar rats, NOS inhibition had no effect on glucose uptake during contraction. In conclusion, NOS inhibition did not affect muscle glucose uptake during contraction in control or T2D Sprague-Dawley rats, and this may have been because there was no increase in NOS activity during contraction.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Hindlimb/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Animals , Biological Transport/drug effects , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Diet, High-Fat , Enzyme Inhibitors/pharmacology , Hindlimb/physiopathology , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , NG-Nitroarginine Methyl Ester/pharmacology , Rats , Rats, Sprague-Dawley
20.
J Physiol ; 593(9): 2185-98, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25688993

ABSTRACT

KEY POINTS: Acute glucagon-like peptide-1 (GLP-1) infusion reversed the high fat diet-induced microvascular insulin resistance that occurred after both 5 days and 8 weeks of a high fat diet intervention. When GLP-1 was co-infused with insulin it had overt effects on whole body insulin sensitivity as well as insulin-mediated skeletal muscle glucose uptake after 5 days of a high fat diet, but not after 8 weeks of high fat diet intervention. Acute GLP-1 infusion did not have an additive effect to that of insulin on microvascular recruitment or skeletal muscle glucose uptake in the control group. Here we demonstrate that GLP-1 potently increases the microvascular recruitment in rat skeletal muscle but does not increase glucose uptake in the fasting state. Thus, like insulin, GLP-1 increased the microvascular recruitment but unlike insulin, GLP-1 had no direct effect on skeletal muscle glucose uptake. ABSTRACT: Acute infusion of glucagon-like peptide-1 (GLP-1) has potent effects on blood flow distribution through the microcirculation in healthy humans and rats. A high fat diet induces impairments in insulin-mediated microvascular recruitment (MVR) and muscle glucose uptake, and here we examined whether this could be reversed by GLP-1. Using contrast-enhanced ultrasound, microvascular recruitment was assessed by continuous real-time imaging of gas-filled microbubbles in the microcirculation after acute (5 days) and prolonged (8 weeks) high fat diet (HF)-induced insulin resistance in rats. A euglycaemic hyperinsulinaemic clamp (3 mU min(-1)  kg(-1) ), with or without a co-infusion of GLP-1 (100 pmol l(-1) ), was performed in anaesthetized rats. Consumption of HF attenuated the insulin-mediated MVR in both 5 day and 8 week HF interventions which was associated with a 50% reduction in insulin-mediated glucose uptake compared to controls. Acute administration of GLP-1 restored the normal microvascular response by increasing the MVR after both 5 days and 8 weeks of HF intervention (P < 0.05). This effect of GLP-1 was associated with a restoration of both whole body insulin sensitivity and increased insulin-mediated glucose uptake in skeletal muscle by 90% (P < 0.05) after 5 days of HF but not after 8 weeks of HF. The present study demonstrates that GLP-1 increases MVR in rat skeletal muscle and can reverse early stages of high fat diet-induced insulin resistance in vivo.


Subject(s)
Capillaries/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucose/metabolism , Insulin Resistance , Muscle, Skeletal/metabolism , Animals , Capillaries/drug effects , Capillaries/physiology , Insulin/pharmacology , Male , Muscle, Skeletal/blood supply , Rats , Rats, Sprague-Dawley , Regional Blood Flow/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...