Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Animal ; 17 Suppl 1: 100754, 2023 May.
Article in English | MEDLINE | ID: mdl-37567661

ABSTRACT

The actions of the beta-nerve growth factor (ß-NGF) on the neuroendocrine and reproductive system have challenged classical views on the control of reproductive function. After endometrial absorption, ß-NGF triggers ovulation and promotes the development of functional corpora lutea in camelids. In this article, we review evidence showing that, in camelids, ß-NGF exerts its actions by acting in both the hypothalamus and the ovary. In the hypothalamus, ß-NGF may induce gonadotropin-releasing hormone (GnRH) release by interacting with neurons or glial cells expressing receptors for ß-NGF. The LH surge occurs under the influence of ovarian estradiol and requires the release of GnRH into the portal vessels to reach the pituitary gland. In the ovary, ß-NGF may be promoting the differentiation of follicular to luteal cells by modifying the steroidogenic profile of ovarian follicular cells in both camelids and ruminants. Although the mechanisms for these actions are largely undetermined, we aim to offer an update on the current understanding of the effects of ß-NGF controlling reproductive function in camelids and ruminants.

2.
Anim Reprod ; 19(4): e20220116, 2022.
Article in English | MEDLINE | ID: mdl-36819481

ABSTRACT

The ovulation mechanism is one of the fascinating physiological processes in reproductive biology in mammals. From the reproductive point of view, the species have been classified as spontaneous or induced ovulators. Although the release of GnRH followed by the preovulatory LH surge is shared between both types of ovulation, the stimulus to initiate GnRH release varies between both categories. In spontaneous ovulators, ovulation depends on the systemic concentration of ovarian steroids, however, in induced ovulators, different stimuli such as copulation, environmental, and social cues can facilitate or induce ovulation regardless of the increases in systemic estradiol concentration. In this review, we document evidence that a male-derived protein is the main factor responsible for inducing ovulation and also modulating the ovarian function in the domestic South American camelid, the llama. The neurotrophin beta-Nerve Growth Factor (ß-NGF) is the principal factor present in the semen of llamas responsible for inducing ovulation in this species. After the intrauterine deposit of semen during mating, ß-NGF is absorbed through the endometrium to reach the circulatory system, where it reaches the hypothalamus and stimulates GnRH release. The potential site of action of this neurotrophin at the brain has not been elucidated, however, hypotheses are raised that the factor may cross the blood-brain barrier and stimulate upstream neuronal networks that lead to the stimulation of GnRH-secreting neurons. It is possible that ß-NGF could be sensed at the median eminence without crossing the blood-brain barrier. Finally, it has been observed that this factor is not only a powerful stimulator of ovulation but also has a luteotrophic effect, resulting in the development of a corpus luteum capable of secreting more progesterone when compared to other ovulation-stimulating analogues.

3.
Anim. Reprod. (Online) ; 19(4): e20220116, 2022.
Article in English | VETINDEX | ID: biblio-1420061

ABSTRACT

The ovulation mechanism is one of the fascinating physiological processes in reproductive biology in mammals. From the reproductive point of view, the species have been classified as spontaneous or induced ovulators. Although the release of GnRH followed by the preovulatory LH surge is shared between both types of ovulation, the stimulus to initiate GnRH release varies between both categories. In spontaneous ovulators, ovulation depends on the systemic concentration of ovarian steroids, however, in induced ovulators, different stimuli such as copulation, environmental, and social cues can facilitate or induce ovulation regardless of the increases in systemic estradiol concentration. In this review, we document evidence that a male-derived protein is the main factor responsible for inducing ovulation and also modulating the ovarian function in the domestic South American camelid, the llama. The neurotrophin beta-Nerve Growth Factor (β-NGF) is the principal factor present in the semen of llamas responsible for inducing ovulation in this species. After the intrauterine deposit of semen during mating, β-NGF is absorbed through the endometrium to reach the circulatory system, where it reaches the hypothalamus and stimulates GnRH release. The potential site of action of this neurotrophin at the brain has not been elucidated, however, hypotheses are raised that the factor may cross the blood-brain barrier and stimulate upstream neuronal networks that lead to the stimulation of GnRH-secreting neurons. It is possible that β-NGF could be sensed at the median eminence without crossing the blood-brain barrier. Finally, it has been observed that this factor is not only a powerful stimulator of ovulation but also has a luteotrophic effect, resulting in the development of a corpus luteum capable of secreting more progesterone when compared to other ovulation-stimulating analogues.(AU)


Subject(s)
Animals , Female , Ovulation/physiology , Camelids, New World/physiology , Reproductive Physiological Phenomena , Gonadotropin-Releasing Hormone/analysis
4.
Front Vet Sci ; 7: 586265, 2020.
Article in English | MEDLINE | ID: mdl-33195615

ABSTRACT

The beta-nerve growth factor (ß-NGF) from llama seminal plasma exerts ovulatory and luteotrophic effects following intramuscular or intrauterine infusion in llamas and alpacas. In this study, we investigate the in vitro effect of llama ß-NGF on the expression of genes involved in angiogenesis and progesterone synthesis as well as progesterone release in preovulatory llama granulosa cells; we also determine whether these changes are mediated via the ERK1/2 signaling pathway. From adult female llamas, we collected granulosa cells from preovulatory follicles by transvaginal ultrasound-guided follicle aspiration; these cells were pooled and incubated. After 80% confluence, the cultured granulosa cells were treated with ß-NGF, ß-NGF plus the MAPK inhibitor U0126, or luteinizing hormone, and the abundance of angiogenic and steroidogenic enzyme mRNA transcripts were quantified after 10 and 20 h by RT-qPCR. We also quantified the progesterone concentration in the media after 48 h by radioimmunoassay. We found that application of ß-NGF increases the abundance of mRNA transcripts of the vascular endothelial growth factor (VEGFA) and the steroidogenic enzymes cytochrome P450 side-chain cleavage (P450scc/CYP11A1), steroidogenic acute regulatory protein (STAR), and 3ß-hydroxysteroid dehydrogenase (HSD3B1) at 10 and 20 h of treatment. Application of the MAPK inhibitor U0126 resulted in downregulation of the genes encoding these enzymes. ß-NGF also enhanced progesterone synthesis, which was prevented by the prior application of the MAPK inhibitor U0126. Finally, western blot analysis confirmed that ß-NGF activates the ERK1/2 signaling pathway. In conclusion, our results indicate that ß-NGF exerts direct luteotropic effects on llama ovarian tissue via the ERK 1/2 pathway.

SELECTION OF CITATIONS
SEARCH DETAIL