Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31655, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845952

ABSTRACT

The post-pandemic energy crisis and ever-increasing environmental degradation necessitate researchers to scrutinize refrigeration systems, major contributors to these issues, for minimal environmental impact and maximum performance. Thus, this study aims to comprehensively examine a triple cascade refrigeration system (TCRS) equipped with hydrocarbon refrigerants (1-butene/Heptane/m-Xylene). This system is specifically designed for ultra-low temperature applications, including vaccine storage, quick-freezing, frozen food preservation, cryogenic processes, and gas liquefaction. The investigation integrates conventional thermodynamic analysis with economic and environmental impact assessments, and finally multi-objective optimization (MOO) to ascertain optimal operating conditions for the system. The effect of (1) evaporator temperature, Tevap (2) condenser temperature, Tcond (3) Lower Temperature Circuit (LTC) condenser temperature, TLTC (4) Mid Temperature Circuit (MTC) condenser temperature, TMTC and (5) Cascade Condenser temperature difference, Δ T on three objective functions (COP, exergy efficiency, and overall plant cost) have been investigated employing a parametric analysis. Subsequently, quadratic equations for these objective functions are generated using the Box-Behnken method, and MOO utilizing the Genetic algorithm has been performed to maximize COP and exergy efficiency while minimizing the overall cost rate. The decision-making techniques TOPSIS and LINMAP are used to retrieve a unique solution from the Pareto Front, and the system performance has been assessed at the optimal point. The optimization result demonstrates that for the 10-kW capacity TCRS, COP, exergy efficiency, and total plant cost are 0.71, 0.51, and 38262.05 $/year respectively, at optimum condition (Tevap = -101.023 °C , Tcond = 36.545 °C , TLTC = - 69.047 °C and TMTC = - 34.651 °C ). Exergy analysis identifies HTC compressor (19.3 %) and throttle valve (15.5 %) as key contributors to total exergy destruction, while economic analysis underscores capital and maintenance costs (72 %) as the primary contributors to the overall cost, with evaporator (43 %) and condenser (20 %) accounting for 63 % of this cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...