Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(26): e2310209, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634392

ABSTRACT

In this work, the experimental evidence of glass-like phonon dynamics and thermal conductivity in a nanocomposite made of GeTe and amorphous carbon is reported, which is of interest for microelectronics, and specifically phase change memories. It is shown that, the total thermal conductivity is reduced by a factor of three at room temperature with respect to pure GeTe, due to the reduction of both electronic and phononic contributions. This latter, similarly to glasses, is small and weakly increasing with temperature between 100 and 300 K, indicating a mostly diffusive thermal transport and reaching a value of 0.86(7) Wm-1K-1 at room temperature. A thorough investigation of the nanocomposite's phonon dynamics reveals the appearance of an excess intensity in the low energy vibrational density of states, reminiscent of the Boson peak in glasses. These features can be understood in terms of an enhanced phonon scattering at the interfaces, due to the presence of elastic heterogeneities, at wavelengths in the 2-20 nm range. The findings confirm recent simulation results on crystalline/amorphous nanocomposites and open new perspectives in phonon and thermal engineering through the direct manipulation of elastic heterogeneities.

2.
Nat Commun ; 7: 11086, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-27025348

ABSTRACT

If quenched fast enough, a liquid is able to avoid crystallization and will remain in a metastable supercooled state down to the glass transition, with an important increase in viscosity upon further cooling. There are important differences in the way liquids relax as they approach the glass transition, rapid or slow variation in dynamic quantities under moderate temperature changes, and a simple means to quantify such variations is provided by the concept of fragility. Here, we report molecular dynamics simulations of a typical network-forming glass, Ge-Se, and find that the relaxation behaviour of the supercooled liquid is strongly correlated to the variation of rigidity with temperature and the spatial distribution of the corresponding topological constraints, which ultimately connect to the fragility minima. This permits extending the fragility concept to aspects of topology/rigidity, and to the degree of homogeneity of the atomic-scale interactions for a variety of structural glasses.

3.
Nat Mater ; 11(11): 952-6, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23064498

ABSTRACT

The study of metal-insulator transitions (MITs) in crystalline solids is a subject of paramount importance, both from the fundamental point of view and for its relevance to the transport properties of materials. Recently, a MIT governed by disorder was observed in crystalline phase-change materials. Here we report on calculations employing density functional theory, which identify the microscopic mechanism that localizes the wavefunctions and is driving this transition. We show that, in the insulating phase, the electronic states responsible for charge transport are localized inside regions having large vacancy concentrations. The transition to the metallic state is driven by the dissolution of these vacancy clusters and the formation of ordered vacancy layers. These results provide important insights on controlling the wavefunction localization, which should help to develop conceptually new devices based on multiple resistance states.

5.
Phys Rev Lett ; 103(24): 247601, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-20366228

ABSTRACT

Using first-principles calculations based on density functional theory, we study the properties of germanium telluride crystalline nanoplatelets and nanoparticles. Above a diameter of 2.7 nm, we predict the appearance of polarization vortices giving rise to an unusual ferrotoroidic ground state with a spontaneous and reversible toroidal moment of polarization. We highlight the crucial role of inhomogeneous strain in stabilizing polarization vortices. Combined with the phase-change properties of germanium telluride, the ferrotoroidic properties could be of practical interest for ternary logic applications.

6.
Phys Rev Lett ; 85(9): 1950-3, 2000 Aug 28.
Article in English | MEDLINE | ID: mdl-10970655

ABSTRACT

The local atomic order of semiconducting liquid GeTe is studied using first-principles molecular-dynamics simulations. Our work points out a high degree of alternating chemical order in the liquid and demonstrates the presence of a Peierls distortion close above the melting temperature. This distortion, absent in the high temperature crystalline structure of NaCl type, is a remnant of the atomic arrangement in the A7 low temperature crystalline phase. It disappears slowly with temperature, as the liquid evolves from a semiconducting to a metallic state.

SELECTION OF CITATIONS
SEARCH DETAIL
...