Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 1054, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36828817

ABSTRACT

Electron beam quality is paramount for X-ray pulse production in free-electron-lasers (FELs). State-of-the-art linear accelerators (linacs) can deliver multi-GeV electron beams with sufficient quality for hard X-ray-FELs, albeit requiring km-scale setups, whereas plasma-based accelerators can produce multi-GeV electron beams on metre-scale distances, and begin to reach beam qualities sufficient for EUV FELs. Here we show, that electron beams from plasma photocathodes many orders of magnitude brighter than state-of-the-art can be generated in plasma wakefield accelerators (PWFAs), and then extracted, captured, transported and injected into undulators without significant quality loss. These ultrabright, sub-femtosecond electron beams can drive hard X-FELs near the cold beam limit to generate coherent X-ray pulses of attosecond-Angstrom class, reaching saturation after only 10 metres of undulator. This plasma-X-FEL opens pathways for advanced photon science capabilities, such as unperturbed observation of electronic motion inside atoms at their natural time and length scale, and towards higher photon energies.


Subject(s)
Electrons , Particle Accelerators , X-Rays , Lasers , Photons
2.
J Synchrotron Radiat ; 26(Pt 4): 1127-1138, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31274436

ABSTRACT

PAL-XFEL utilizes a three-chicane bunch compression (3-BC) scheme (the very first of its kind in operation) for free-electron laser (FEL) operation. The addition of a third bunch compressor allows for more effective mitigation of coherent synchrotron radiation during bunch compression and an increased flexibility of system configuration. Start-to-end simulations of the effects of radiofrequency jitter on the electron beam performance show that using the 3-BC scheme leads to better performance compared with the two-chicane bunch compression scheme. Together with the high performance of the linac radiofrequency system, it enables reliable operation of PAL-XFEL with unprecedented stability in terms of arrival timing, pointing and intensity; an arrival timing jitter of better than 15 fs, a transverse position jitter of smaller than 10% of the photon beam size, and an FEL intensity jitter of smaller than 5% are consistently achieved.

3.
Phys Rev Lett ; 113(13): 134803, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25302894

ABSTRACT

We describe the experimental generation and measurement of coherent light that carries orbital angular momentum from a relativistic electron beam radiating at the second harmonic of a helical undulator. The measured helical phase of the light is shown to be in agreement with predictions of the sign and magnitude of the phase singularity and is more than 2 orders of magnitude greater than the incoherent signal. Our setup demonstrates that such optical vortices can be produced in modern free-electron lasers in a simple afterburner arrangement for novel two-mode pump-probe experiments.

4.
Phys Rev Lett ; 110(24): 244801, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165931

ABSTRACT

We report on a proof-of-principle demonstration of a two-stage cascaded optical inverse free-electron laser (IFEL) accelerator in which an electron beam is accelerated by a strong laser pulse after being packed into optical microbunches by a weaker initial laser pulse. We show experimentally that injection of precisely prepared optical microbunches into an IFEL allows net acceleration or deceleration of the beam, depending on the relative phase of the two laser pulses. The experimental results are in excellent agreement with simulation. The demonstrated technique holds great promise to significantly improve the beam quality of IFELs and may have a strong impact on emerging laser accelerators driven by high-power optical lasers.


Subject(s)
Lasers , Particle Accelerators , Electrons
5.
Phys Rev Lett ; 109(7): 074801, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-23006375

ABSTRACT

We report generation of density modulation at terahertz (THz) frequencies in a relativistic electron beam through laser modulation of the beam longitudinal phase space. We show that by modulating the energy distribution of the beam with two lasers, density modulation at the difference frequency of the two lasers can be generated after the beam passes through a chicane. In this experiment, density modulation around 10 THz was generated by down-converting the frequencies of an 800 nm laser and a 1550 nm laser. The central frequency of the density modulation can be tuned by varying the laser wavelengths, beam energy chirp, or momentum compaction of the chicane. This technique can be applied to accelerator-based light sources for generation of coherent THz radiation and marks a significant advance toward tunable narrow band THz sources.

6.
Phys Rev Lett ; 108(2): 024802, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22324690

ABSTRACT

Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

7.
Phys Rev Lett ; 105(11): 114801, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20867575

ABSTRACT

We report the first experimental demonstration of the echo-enabled harmonic generation technique, which holds great promise for generation of high-power, fully coherent short-wavelength radiation. In this experiment, coherent radiation at the 3rd and 4th harmonics of the second seed laser is generated from the so-called beam echo effect. The experiment confirms the physics behind this technique and paves the way for applying the echo-enabled harmonic generation technique for seeded x-ray free electron lasers.

8.
Phys Rev Lett ; 88(19): 194801, 2002 May 13.
Article in English | MEDLINE | ID: mdl-12005637

ABSTRACT

Electron beams with the lowest, normalized transverse emittance recorded so far were produced and confirmed in single-bunch-mode operation of the Accelerator Test Facility at KEK. We established a tuning method of the damping ring which achieves a small vertical dispersion and small x-y orbit coupling. The vertical emittance was less than 1% of the horizontal emittance. At the zero-intensity limit, the vertical normalized emittance was less than 2.8 x 10(-8) rad m at beam energy 1.3 GeV. At high intensity, strong effects of intrabeam scattering were observed, which had been expected in view of the extremely high particle density due to the small transverse emittance.

SELECTION OF CITATIONS
SEARCH DETAIL
...