Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animal ; 17(1): 100695, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36608539

ABSTRACT

Various studies with growing ruminants report increases in nitrogen use efficiency (NUE) when feeding oscillating (OS) dietary CP, whereas limited research with lactating dairy cows demonstrates a lack of improvement in NUE when feeding OS diets. We hypothesised that a total mixed ration (TMR) delivering OS CP (48-h phases of 134 and 171 g CP/kg DM, respectively) compared to a static CP TMR (ST; 152 g CP/kg DM) would result in similar or increased urinary purine derivative excretion (as a marker of microbial protein synthesis (MPS)) and greater urinary nitrogen excretion in lactating dairy cows. Responses in intake, production, apparent total tract digestibility (ATTD), nutrient balance, and estimated MPS were evaluated using faecal and urine collection in 12 multiparous cows (172 ± 39 d in milk) in a randomised complete block design, where total urinary output was estimated indirectly. All measurements were taken during d 8 (at 1700) to d 16 (at 1700) of the 16-d study that followed a 28-d period in which cows already received their respective treatments. Dry matter intake, yields of milk, protein, fat, lactose, and fat- and protein-corrected milk were similar for ST and OS. Milk composition, BW, and body condition score also did not differ between treatments, except for a tendency for increased milk urea concentration with OS (13.7 vs 12.4 mg/dL). Feed efficiency, NUE and ATTD of organic matter, NDF, CP and gross energy did not differ, but ATTD of crude fat (658 vs 627 g/kg) and starch (980 vs 975 g/kg) increased, and ATTD of DM (702 vs 691 g/kg) tended to increase with OS. Milk energy as a proportion of digested energy tended to decrease with OS (34.6 vs 37.1%), but other energy metabolism variables were not affected by treatment. Estimated urinary nitrogen excretion increased (165 vs 144 g/d), estimated urinary nitrogen as a proportion of nitrogen intake tended to increase (25.3 vs 22.7%), and milk nitrogen as a proportion of digested nitrogen decreased (47.3 vs 51.8%) in response to OS. Estimated urinary excretion of creatinine (184 vs 165 mmol/d), uric acid (29 vs 20 mmol/d) and urea (3.1 vs 2.5 mol/d) increased, but other nitrogen metabolism parameters were not affected by OS. Overall, oscillating dietary CP content did not affect lactational performance, milk NUE, or estimated MPS. However, ATTD of some nutrients increased, postabsorptive energy use for milk synthesis tended to decrease, and estimated urinary nitrogen losses increased with OS.


Subject(s)
Digestion , Lactation , Animals , Cattle , Female , Animal Feed/analysis , Diet/veterinary , Dietary Proteins/metabolism , Lactation/physiology , Milk/metabolism , Nitrogen/metabolism , Nutrients , Rumen/metabolism , Urea/metabolism
2.
J Dairy Sci ; 104(10): 10714-10726, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34218916

ABSTRACT

Limited research with growing ruminants indicates that oscillating (OS) dietary crude protein (CP) concentration may improve nitrogen use efficiency (NUE). Our aim was to determine if a total mixed ration (TMR) based on OS CP (48-h phases of 13.4% and 16.5% CP, respectively) would increase NUE of lactating dairy cows compared with a static CP TMR (ST; 14.9% CP). The experiment was a randomized complete block design with 50 cows [150 ± 61 (mean ± SD) d in milk]. Cows were blocked by parity, days in milk, and milk protein yield. On average, diets were equal in composition over the total experiment. Cows were milked twice daily, and 8 milk samples were collected in each 4-d period. Each 48 h of low-CP (LP) and high-CP (HP) TMR offered to OS cows corresponded to milk collected at milkings 1 to 4 and 5 to 8, respectively. Dry matter intake (mean = 25.5 kg/d for both treatment groups); yields of milk (mean = 31.5 kg/d for both treatment groups), protein, fat, lactose, and fat- and protein-corrected milk (mean = 33.6 kg/d for both treatment groups); and milk concentration of protein, fat, and lactose did not differ between treatments. However, milk urea concentration was higher for OS compared with ST (12.2 vs. 11.3 mg/dL). Body weight, body condition score, NUE, and feed efficiency were unaffected by OS. Apparent total-tract digestibility of dry matter (695 vs. 677 g/kg), organic matter (714 vs. 697 g/kg), CP (624 vs. 594 g/kg), neutral detergent fiber (530 vs. 499 g/kg), and starch (976 vs. 973 g/kg) were higher for OS than for ST cows. Cows in OS responded transiently, and regression analysis of differences within block over time revealed changes in yield of milk (-531 g/d), milk protein (-25.6 g/d), and milk lactose (-16.7 g/d) in LP. Opposite effects were observed for yield of milk (+612 g/d), milk protein (+28.8 g/d), and milk lactose (+28.0 g/d) during HP. Changes in concentrations of milk protein (-0.050%/d), lactose (+0.030%/d), and urea (-3.0 mg/dL per day) during LP, and in milk lactose (-0.024%/d) and urea (+4.3 mg/dL per day) during HP, were observed. Milk yield, lactose yield, and protein yield were lower for OS than ST cows at the last milking of LP and at the first milking of HP. Milk urea concentration did not show such a lag and was lower in the last 2 milkings of LP, and higher in the last 3 milkings of HP, in OS compared with ST cows. Overall, performance and NUE were unaffected by OS treatment, but apparent total-tract digestibility and milk urea concentration increased, and transient effects on milk yield and composition occurred in OS cows.


Subject(s)
Lactation , Nitrogen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Proteins , Digestion , Eating , Female , Pregnancy , Rumen
SELECTION OF CITATIONS
SEARCH DETAIL
...