Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 52(13): 3931-48, 2007 Jul 07.
Article in English | MEDLINE | ID: mdl-17664586

ABSTRACT

The energy dependence of the radiochromic film (RCF) response to beta-emitting sources was studied by dose theoretical calculations, employing the MCNP4C and EGSnrc/BEAMnrc Monte Carlo codes. Irradiations with virtual monochromatic electron sources, electron and photon clinical beams, a (32)P intravascular brachytherapy (IVB) source and other beta-emitting radioisotopes ((188)Re, (90)Y, (90)Sr/(90)Y,(32)P) were simulated. The MD-55-2 and HS radiochromic films (RCFs) were considered, in a planar or cylindrical irradiation geometry, with water or polystyrene as the surrounding medium. For virtual monochromatic sources, a monotonic decrease with energy of the dose absorbed to the film, with respect to that absorbed to the surrounding medium, was evidenced. Considering the IVB (32)P source and the MD-55-2 in a cylindrical geometry, the calibration with a 6 MeV electron beam would yield dose underestimations from 14 to 23%, increasing the source-to-film radial distance from 1 to 6 mm. For the planar beta-emitting sources in water, calibrations with photon or electron clinical beams would yield dose underestimations between 5 and 12%. Calibrating the RCF with (90)Sr/(90)Y, the MD-55-2 would yield dose underestimations between 3 and 5% for (32)P and discrepancies within +/-2% for (188)Re and (90)Y, whereas for the HS the dose underestimation would reach 4% with (188)Re and 6% with (32)P.


Subject(s)
Brachytherapy/methods , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Software , X-Ray Film , Beta Particles , Calibration , Electrons , Monte Carlo Method , Phantoms, Imaging , Photons , Polystyrenes/chemistry , Radiometry , Radiotherapy Dosage , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...