Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Drug Metab Lett ; 11(2): 128-137, 2017.
Article in English | MEDLINE | ID: mdl-29219065

ABSTRACT

BACKGROUND: Nuclear Receptors (NRs), including PXR and CAR, are presumed to be ligand-dependent transcription factors, but ligand binding is not an absolute requirement for activation. Indeed, many compounds activate PXR and CAR by indirect mechanisms. Detecting these indirect activators of specific nuclear receptors in vitro has been difficult. As NR activation of either or both PXR and CAR can lead to drug-drug interactions and adverse drug effects, false negatives obtained with screening tools incapable of detecting indirect activators could present liabilities. OBJECTIVE: The aim of this study was to establish assays that identify indirect activators of human PXR and CAR. METHODS: Commercially available human PXR and CAR transactivation assays were used for analyses. RESULTS: We show that transactivation assays containing full-length nuclear receptors with native promoters can identify indirect activators of human CAR and PXRwhen compared to those of commercially available assays containing only the LBD of PXR and CAR. Of these two assay systems, only human PXR and CAR1 assays with full-length receptors and native promoters are capable of detecting indirect and ligand activators. With this capability, several kinase inhibitors were identified that activate PXR and CAR by indirect mechanisms. Furthermore by using both the LBD and full-length receptors, phenobarbital and midostaurin were found to be direct and indirect activators of PXR while human CAR activation by phenobarbital occurs by indirect mechanisms only. CONCLUSION: Cell based transactivation assays employing the full-length receptors and native promoters identify both direct and indirect activators of either or both human PXR and CAR.


Subject(s)
Biological Assay , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Steroid/agonists , Transcriptional Activation/drug effects , Constitutive Androstane Receptor , Drug Discovery/methods , Hep G2 Cells , Humans , Ligands , Phenobarbital/pharmacology , Pregnane X Receptor , Promoter Regions, Genetic , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Steroid/genetics , Staurosporine/analogs & derivatives , Staurosporine/pharmacology
2.
PLoS One ; 11(10): e0164642, 2016.
Article in English | MEDLINE | ID: mdl-27732639

ABSTRACT

The pregnane X receptor (PXR/SXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are nuclear receptors (NRs) involved in the regulation of many genes including cytochrome P450 enzymes (CYPs) and transporters important in metabolism and uptake of both endogenous substrates and xenobiotics. Activation of these receptors can lead to adverse drug effects as well as drug-drug interactions. Depending on which nuclear receptor is activated will determine which adverse effect could occur, making identification important. Screening for NR activation by New Molecular Entities (NMEs) using cell-based transactivation assays is the singular high throughput method currently available for identifying the activation of a particular NR. Moreover, screening for species-specific NR activation can minimize the use of animals in drug development and toxicology studies. With this in mind, we have developed in vitro transactivation assays to identify compounds that activate canine and rat PXR and CAR3. We found differences in specificity for canine and rat PXR, with the best activator for canine PXR being 10 µM SR12813 (60.1 ± 3.1-fold) and for rat PXR, 10 µM dexamethasone (60.9 ± 8.4 fold). Of the 19 test agents examined, 10 and 9 significantly activated rat and canine PXR at varying degrees, respectively. In contrast, 5 compounds exhibited statistically significant activation of rat CAR3 and 4 activated the canine receptor. For canine CAR3, 50 µM artemisinin proved to be the best activator (7.3 ± 1.8 and 10.5 ± 2.2 fold) while clotrimazole (10 µM) was the primary activator of the rat variant (13.7 ± 0.8 and 26.9 ± 1.3 fold). Results from these studies demonstrated that cell-based transactivation assays can detect species-specific activators and revealed that PXR was activated by at least twice as many compounds as was CAR3, suggesting that there are many more agonists for PXR than CAR.


Subject(s)
Drug Evaluation, Preclinical/methods , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Steroid/genetics , Transcriptional Activation/drug effects , Animals , Cell Line , Constitutive Androstane Receptor , Dogs , High-Throughput Screening Assays/methods , Humans , Pregnane X Receptor , Rats , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/metabolism , Species Specificity
3.
Expert Opin Drug Discov ; 9(6): 669-86, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24819724

ABSTRACT

INTRODUCTION: Adverse drug effects and drug-drug interactions (DDIs) can be elicited by the activation of several nuclear receptors (NRs). Of the NRs that regulate expression of drug metabolizing enzymes and transporters and alter cellular processes, the most important are pregnane X receptor, constitutive androstane receptor and aryl hydrocarbon receptor. Screening for the activation of these receptors can be achieved during drug discovery by using various high-throughput analyses including ligand binding and transactivation assays. AREAS COVERED: This review focuses on the importance of screening for NR activation during drug discovery and includes a discussion of the various assays to evaluate activation of NRs by xenobiotics. It also describes screening for species-specific NR activation to attenuate the use of animals in toxicology studies and to identify complications associated with drug metabolism and clearance that may occur during pharmacokinetic analyses. EXPERT OPINION: Given the potential for adverse drug effects and DDIs during all phases of drug elimination, NR screening should occur early in drug discovery. Such screening could be used in structure-activity relationship studies to guide chemists in altering compound structures to eliminate the NR-binding and activation properties on priority compounds. Early screening can also reduce the risk of adverse drug effects, identify novel therapeutic agents and decrease the number of animals used in drug development. Overall, performing these types of assays described here could decrease drug development costs, alleviate the liability associated with drugs that activate NR and prevent unsafe drugs from entering the marketplace.


Subject(s)
Drug Design , Receptors, Cytoplasmic and Nuclear/drug effects , Xenobiotics/pharmacology , Animals , Drug Discovery/methods , Drug Interactions , Drug-Related Side Effects and Adverse Reactions/prevention & control , High-Throughput Screening Assays/methods , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Species Specificity , Structure-Activity Relationship , Xenobiotics/adverse effects , Xenobiotics/chemistry
4.
Drug Metab Rev ; 45(1): 101-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23330544

ABSTRACT

The evolution of scientific information relating to the regulation of xenobiotic disposition has extended to the discovery of an intricate group of receptor systems now recognized as master regulators. These ligand-activated transcription factors are commonly designated as "nuclear receptors", and include CAR (NR1I3), PXR (NR1I2), PPAR (NR1C1, NR1C2, and NR1C3) and AhR (HLHE76). As regulators of gene expression, activation of these receptors can elicit a plethora of drug-drug interactions. The aforementioned nuclear receptors bind a wide range of structurally-unrelated ligands, such as steroid hormones, bile acids, and small drug-type molecules. A pivotal nuclear receptor with regards to regulation of drug-drug interactions is the pregnane X receptor (PXR). Gene expression profiling has demonstrated that PXR regulates over 60 human genes that are involved not only in physiological functions but also in the metabolism of xenobiotics. Moreover, chemical library screening suggests that about 10% of the compounds comprising the U. S. Food and Drug Administration 1 and 2, Sigma-Aldrich LOPAC collection, Biomol, and Tocris/TimTec bioactive collection libraries exhibit some form of PXR binding. For these reasons, efficient, rapid and economical systems have been developed to identify nuclear receptor ligands. Cell-based assays encompassing transiently and stably-transfected cells and mammalian two-hybrid systems are currently being employed by the pharmaceutical industry to screen compounds for binding to and/or activation of nuclear receptors. Overall, these systems have the ability to predict in vivo responses to receptor activation that culminate in drug-drug interactions and adverse drug effects.


Subject(s)
Drug Discovery/methods , Receptors, Cytoplasmic and Nuclear/metabolism , Xenobiotics/metabolism , Xenobiotics/pharmacology , Constitutive Androstane Receptor , Cytological Techniques/methods , Drug Interactions , Gene Expression , Humans , Ligands , Receptors, Cytoplasmic and Nuclear/genetics
5.
Drug Metab Dispos ; 40(11): 2204-11, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22912432

ABSTRACT

The increase in cytochrome P450 (P450) enzyme activity noted upon exposure to therapeutics can elicit marked drug-drug interactions (DDIs) that may ultimately result in poor clinical outcome or adverse drug effects. As such, in vitro model systems that can rapidly and accurately determine whether potential therapeutics activate the human pregnane X receptor (PXR) and thus induce CYP3A P450 levels are highly sought after tools for drug discovery. To that end, we assessed whether DPX2 cells, a HepG2-derived cell line stably integrated with a PXR expression vector plus a luciferase reporter, could detect agents that not only cause PXR activation/CYP3A induction but also elicit clinical DDIs. All 20 clinical inducers and 9 of 15 clinical noninducers examined activated PXR in DPX2 cells (E(max) > 8-fold), although activation parameters obtained with the noninducers were not predictive of DDI. The relative induction score, calculated by combining PXR activation parameters (EC(50) and E(max)) in DPX2 cells for seven inducers plus four noninducers with their efficacious total plasma concentrations, strongly correlated (R(2) = 0.90) with the magnitude of induction of midazolam clearance. Thus, the DPX cell-based PXR activation system is not only capable of distinguishing potential inducers in a high-throughput manner but can also differentiate among compounds in predicting the magnitude of induction-mediated DDIs, providing a means for structure-activity relationship screening during discovery and development.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Cell Line, Tumor , Cytochrome P-450 CYP3A/biosynthesis , Drug Interactions , Enzyme Induction , Hep G2 Cells , Humans , Midazolam/metabolism , Pregnane X Receptor , Receptors, Steroid/metabolism , Structure-Activity Relationship
6.
Curr Drug Metab ; 11(9): 806-14, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21189134

ABSTRACT

The screening of new drug candidates for nuclear receptor activation can identify agents with the potential to produce drug-drug interactions or elicit adverse drug effects. The nuclear receptors of interest are those that control the expression of drug metabolizing enzymes and drug transporters, and include the constitutive androstane receptor (CAR, NR1I3), the pregnane X receptor (PXR, NR1I2) and the aryl hydrocarbon receptor (AhR). This review will focus on the methods currently used to assess activation of these receptors. Assessment of nuclear receptor activation can be accomplished using direct or indirect approaches. Indirect methods quantify specific gene products that result from nuclear receptor activation while direct approaches measure either the binding of ligands to the receptors or the transcriptional events produced by ligand binding. Assays that directly quantify nuclear receptor activation are growing in popularity and, importantly, are amenable to high throughput screening (HTS). Several ligand binding assays are currently being utilized, including radioligand competition binding, where compounds compete with radiolabelled ligand for binding to PXR or CAR, such as the scintillation proximity binding assay that measures the reaction of ligands with receptor-coated beads. A fluorescence resonance energy transfer assay has also been developed, where the fluorescent signal is generated via the ligand-dependent interaction between the fluorescently-labeled ligand binding domain of a nuclear receptor and co-activator proteins. Other in vitro activation assays include transient- and stably-transfected cell lines incorporating an expression vector for PXR, CAR or AhR plus a reporter gene vector containing response elements. The methods focused on in this review will be limited to the more direct in vitro approaches that are amenable to high throughput screening.


Subject(s)
Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays , Receptors, Aryl Hydrocarbon/agonists , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Steroid/agonists , Animals , Constitutive Androstane Receptor , Drug Interactions , Humans , Ligands , Pregnane X Receptor , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/metabolism , Toxicity Tests
7.
Drug Metab Dispos ; 38(12): 2246-51, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20861156

ABSTRACT

Nanosilver particles are present in consumer and health care products. Their effects on human microsomal cytochrome P450 (P450) activities and induction in luciferase reporter-engineered Caco-2 (MDR1.C) and HepG2 (DPX2 and 1A2DRE) cells have been investigated. The LD(50) values were ∼ 4 µg silver/ml for HepG2 and 5 µg/ml for Caco-2 cells. At silver concentrations that showed no decreased cell viability (<1 µg silver/ml), the pregnane X receptor (PXR)-driven 4.5-fold induction response of MDR1.C cells to 50 µM omeprazole was unaffected. In DPX2 cells, the PXR-driven 5.5- and 6.5-fold induction responses to omeprazole and 10 µM rifampicin were attenuated to 4- and 3.5-fold, respectively. Nanosilver particles alone showed no induction. In 1A2DRE cells, the aryl hydrocarbon receptor-driven 5.5-fold induction response to omeprazole was attenuated to 4-fold. In 1A2DRE cells, nanosilver alone elicited slight induction at 1 µg/ml. The inhibition of human P450-selective activities by nanosilver particles in vitro was proportional to the silver/microsomal protein ratio. At a fixed (0.5 mg/ml) protein concentration, P450-selective activities differed in sensitivity (IC(50) value). Coumarin 7-hydroxylation and 7-ethoxy-4-trifluoromethylcoumarin O-deethylation exhibited the highest IC(50) values (33.5 and 31.9 µM, respectively) and S-mephenytoin 4-hydroxylation exhibited the lowest (6.4 µM). Other IC(50) values were, in ascending order, 8.0 to 9.3 µM (testosterone 6ß-hydroxylation, 7-benzyloxyquinoline debenzylation, and diclofenac 4-hydroxylation), 16.0 µM (chlorzoxazone 6-hydroxylation), 21.2 µM [7-methoxy-4-(aminomethyl)-coumarin O-demethylation], and 24.4 µM (7-methoxyresorufin O-demethylation). An investigation of 70 µM nanosilver particles showed that microsomal NADPH cytochrome c reductase activities were inhibited <12%. From our in vitro observations, we extrapolated that nanosilver particles reaching the liver may be a potential source of drug-drug interactions.


Subject(s)
Nanoparticles , Pharmaceutical Preparations/metabolism , Silver/pharmacology , Caco-2 Cells , Hep G2 Cells , Humans , Pregnane X Receptor , Receptors, Steroid/drug effects
8.
Drug Metab Dispos ; 32(12): 1462-7, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15448116

ABSTRACT

Antiretroviral therapy for human immunodeficiency virus (HIV) infection includes treatment with both reverse transcriptase inhibitors and protease inhibitors, which markedly suppress viral replication and circulating HIV RNA levels. Cytochrome P450 (P450) enzymes in human liver, chiefly CYP3A4, play a pivotal role in protease inhibitor biotransformation, converting these agents to largely inactive metabolites. However, the protease inhibitor nelfinavir (Viracept) is metabolized mainly to nelfinavir hydroxy-t-butylamide (M8), which exhibits potent antiviral activity, and to other minor products (termed M1 and M3) that are inactive. Since indirect evidence suggests that CYP2C19 underlies M8 formation, we examined the role of this inducible, polymorphic P450 enzyme in nelfinavir t-butylamide hydroxylation by human liver. Rates of microsomal M8 formation were 50.6 +/- 28.3 pmol of product formed/min/nmol P450 (n = 5 subjects), whereas kinetic analysis of the reaction revealed a KM of 21.6 microM and a Vmax of 24.6 pmol/min/nmol P450. In reconstituted systems, CYP2C19 catalyzed nelfinavir t-butylamide hydroxylation at a turnover rate of 2.2 min(-1), whereas CYP2C9, CYP2C8, and CYP3A4 were inactive toward nelfinavir. Polyclonal anti-CYP2C9 (cross-reactive with CYP2C19) and monoclonal anti-CYP2C19 completely inhibited microsomal M8 production, whereas monoclonal CYP2C9 and polyclonal CYP3A4 antibodies were without effect. Similarly, the CYP2C19 substrate omeprazole strongly inhibited (75%) hepatic nelfinavir t-butylamide hydroxylation at a concentration of only 12.5 microM. Our study shows that CYP2C19 underlies formation in human liver of M8, a bioactive nelfinavir metabolite. The inducibility of CYP2C19 by agents (e.g., rifampicin) often taken concurrently with nelfinavir, together with this P450's known polymorphic nature, may thus be important determinants of nelfinavir's antiviral potency.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , HIV Protease Inhibitors/pharmacokinetics , Microsomes, Liver/metabolism , Mixed Function Oxygenases/metabolism , Nelfinavir/analogs & derivatives , Nelfinavir/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases/immunology , Biotransformation , Cytochrome P-450 CYP2C19 , Enzyme Inhibitors/pharmacology , Humans , Hydroxylation , In Vitro Techniques , Kinetics , Mixed Function Oxygenases/antagonists & inhibitors , Mixed Function Oxygenases/immunology , Nelfinavir/metabolism , Omeprazole/pharmacology
9.
Drug Metab Dispos ; 32(12): 1337-40, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15355885

ABSTRACT

A polymorphism for the phase I drug-metabolizing enzyme, flavin-containing monooxygenase isoform 2 (FMO2), encoding either truncated inactive protein, FMO2X472 (FMO2.2A), or full-length active enzyme, FMO2Q472 (FMO2.1), is known and exhibits significant interethnic differences in allelic frequency. FMO2 is the major or sole FMO isoform expressed in the lung of most mammals, including nonhuman primates. To date, FMO2.1 has been found only in African-American and Hispanic populations, rendering individuals with this allele subject to drug metabolism that is potentially different from that of the general population. Approximately 26% of African-Americans (n = 180) possess the FMO2*1 allele. In preliminary studies, we initially estimated that 5% of Hispanics (n = 40) have the FMO2*1 allele, but access to large cohorts of individuals of defined national origin has allowed us to determine the occurrence among Mexican-American and Puerto Rican-American groups. We used allele-specific genotyping to detect FMO2*1 from 632 Hispanic individuals, including 280 individuals of Mexican origin and 327 individuals of Puerto Rican origin. Statistical analysis indicated that results from Mexican (five sample sources) and Puerto Rican (three sample sources) samples were consistent with the hypothesis of homogeneity within each group from different sources. Data were subsequently pooled across sources to test for evidence of a difference in occurrence of FMO2*1 between ethnic groups. There was strong evidence (p = 0.0066) that FMO2*1 is more common among Puerto Ricans (7%) than among individuals of Mexican descent (2%). The overall occurrence of FMO2*1 among Hispanics of all origins is estimated to be between 2 and 7%.


Subject(s)
Gene Frequency , Oxygenases/genetics , Alleles , Cohort Studies , DNA/chemistry , DNA/genetics , Environmental Exposure , Genotype , Hispanic or Latino/statistics & numerical data , Humans , Isoenzymes/genetics , Mexican Americans/statistics & numerical data , Occupational Exposure , Pharmaceutical Preparations/metabolism , Reverse Transcriptase Polymerase Chain Reaction , United States/epidemiology
10.
Toxicol Sci ; 79(2): 233-41, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15056802

ABSTRACT

CYP2E1 and CYP4A11 are cytochrome P450 enzymes that are regulated by physiological conditions including diabetes and fasting. In addition, the xenochemical clofibrate has been reported to induce both rodent CYP2E1 and CYP4A. These findings suggest similar modes of regulation. Also in common to both enzymes is the ability to metabolize fatty acids such as laurate and arachidonic acid. Here, we used primary cultures of human hepatocytes to determine if certain xenochemicals could regulate CYP2E1 and CYP4A11. Ethanol significantly (p < 0.05) increased expression of CYP2E1 mRNA by 216 +/- 32% of control, but did not alter CYP4A11 mRNA accumulation (145 +/- 22% of control). In contrast, hepatocytes exposed to ethanol exhibited only a slight elevation in CYP2E1 protein (122 +/- 13% of control) and a negligible effect on CYP4A11 protein. Clofibrate significantly (p < 0.05) enhanced both CYP4A11 mRNA and protein by 239 +/- 30% and 154 +/- 10% of control, respectively, but did not increase CYP2E1. Because rodent CYP4A is reportedly regulated by fatty acids through peroxisome proliferator activated receptor alpha (PPARalpha) and CYP2E1 is induced by high fat diets, we examined the effects of a medium chain fatty acid, palmitate on CYP2E1 mRNA content. Palmitic acid significantly (p < 0.05) increased CYP2E1 mRNA to 326 +/- 57% of control. Collectively, results presented here identify agents that enhance CYP2E1 and CYP4A11 at the transcription level and suggest that fatty acids may represent a similar mode of regulation for these P450 enzymes. The lack of induction of CYP2E1 protein by ethanol in human hepatocytes indicates that for certain P450 enzymes, isolated hepatocytes may not be an adequate tool for predicting in vivo responses.


Subject(s)
Clofibrate/pharmacology , Cytochrome P-450 CYP2E1/biosynthesis , Cytochrome P-450 Enzyme System/biosynthesis , Ethanol/pharmacology , Hepatocytes/drug effects , Palmitic Acid/pharmacology , Adolescent , Adult , Aged , Blotting, Northern , Blotting, Western , Cells, Cultured , Child , Child, Preschool , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP4A , Cytochrome P-450 Enzyme System/genetics , Female , Gene Expression Regulation, Enzymologic/drug effects , Hepatocytes/enzymology , Humans , Male , Middle Aged , RNA, Messenger/analysis , RNA, Messenger/biosynthesis
11.
Drug Metab Dispos ; 31(5): 533-9, 2003 May.
Article in English | MEDLINE | ID: mdl-12695340

ABSTRACT

Human CYP3A4 metabolizes a majority of clinically important substrates at variable rates. Accounting for these unpredictable rates is the wide variation noted in expression of this enzyme that is due, in part, to xenobiotic exposure. We used primary cultures of human hepatocytes from 17 individuals to assess the inducibility of CYP3A4 mRNA by prototypical inducers, dietary flavonoids, and botanicals. Those agents producing the greatest mRNA accumulation were 10 microM RIF (699 +/- 307% of control levels) 100 microM phenytoin (707 +/- 188% of control), 1 mM phenobarbital (536 +/- 207% of control), and 100 microM omeprazole (404 +/- 8% of control). Various concentrations of RIF were found to exhibit a typical dose-response curve for CYP3A4 mRNA content. A reporter gene assay using the human pregnane X receptor (hPXR) and promoter regions of CYP3A4 transiently transfected into HepG2 cells, exhibited inductive properties by the aforementioned therapeutics that were similar to those observed in hepatocytes. Several flavonoids including quercetin, resveratrol, and curcumin were also examined for their ability to induce CYP3A4 in human hepatocytes. Only quercetin produced accumulation of CYP3A4 mRNA (230 +/- 73% of control). When examined in a reporter gene assay, this flavonoid exhibited negligible increases in luciferase activity suggesting that quercetin induced CYP3A4 by mechanisms that may not involve PXR. We also examined the effects of herbals on CYP3A4 expression in human hepatocytes. Grapeseed extract, ginseng, silymarin, and kava-kava produced 270 +/- 73, 155 +/- 83, 100 +/- 10, and 386 +/- 185% of control CYP3A4 mRNA, respectively. Of these botanicals only kava-kava produced enhanced luciferase activity (11.6 +/- 2.1 fold above DMSO treated cells). Such results indicate that kava-kava required PXR to mediate CYP3A4 induction. Collectively, results demonstrated that several botancials induce CYP3A4, suggesting the potential for drug-herbal interactions.


Subject(s)
Cytochrome P-450 Enzyme System/biosynthesis , Gene Expression Regulation, Enzymologic/drug effects , Hepatocytes/drug effects , Pharmaceutical Preparations , Plant Preparations/pharmacology , Adolescent , Adult , Aged , Blotting, Northern , Child , Child, Preschool , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/genetics , Enzyme Induction/drug effects , Female , Flavonoids/pharmacology , Hepatocytes/enzymology , Humans , Male , Middle Aged , Pharmacology , Plant Extracts/pharmacology , RNA, Messenger/metabolism
12.
Drug Metab Rev ; 34(3): 523-32, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12214664

ABSTRACT

Mammalian flavin-containing monooxygenase (FMO) exists as six gene families and metabolizes a plethora of drugs and xenobiotics. The major FMO in adult human liver, FMO3, is responsible for trimethylamine (TMA) N-oxygenation. A number of FMO3 mutant alleles have been described and associated with a disease termed trimethylaminuria (TMAU). The TMAU patient excretes large amounts of TMA in urine and sweat. A more recent ethnically related polymorphism in expression of the major FMO in lung, FMO2, has been described. All Caucasians and Asians genotyped to date are homozygous for a CAG --> TAG amber mutation resulting in a premature stop codon and a nonfunctional protein truncated at AA 472 (wildtype FMO2 is 535 AA). This allele has been designated hFMO2*2A. Twenty-six percent of individuals of African descent and 5% of Hispanics genotyped to date carry at least one allele coding for full-length FMO2 (hFMO2*1 allele). Preliminary evidence indicates that FMO2.1 is very active toward the S-oxygenation of low MW thioureas, including the lung toxicant ethylene thiourea. Polymorphic expression of functional FMO2 in the individuals of African and Hispanic descent may markedly influence drug metabolism and/or xenobiotic toxicity in the lung.


Subject(s)
Isoenzymes/genetics , Oxygenases/genetics , Polymorphism, Genetic , Animals , Base Sequence , Ethnicity/genetics , Genotype , Humans , Methylamines/metabolism , Molecular Sequence Data , Multigene Family , Xenobiotics/metabolism
13.
J Pharmacol Exp Ther ; 302(2): 475-82, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12130704

ABSTRACT

Although CYP2C8, CYP2C9, and CYP2C19 play an important role in drug biotransformation, factors influencing the expression and activity of these CYP2C P450s in human liver remain largely undefined. We used primary cultures of human hepatocytes from 15 subjects to assess the inducibility of CYP2C enzyme expression by prototypical inducer agents, including rifampicin, dexamethasone, and phenobarbital. After culture for 72 h in serum-free medium on collagen, Western blotting revealed that CYP2C9 was the only CYP2C enzyme expressed at appreciable levels in untreated hepatocytes. Subsequent treatment with 25 microMrifampicin for 48 h elicited marked increases in CYP2C8 (700 +/- 761%), CYP2C19 (854%), and CYP2C9 (209 +/- 176%) protein content versus a 550 +/- 170% enhancement of CYP3A4 enzyme levels. Parallel increases in CYP2C mRNAs, measured by Northern blotting and/or RNase protection, were found in rifampicin-treated hepatocytes, with CYP2C8, CYP2C9, and CYP2C19 transcripts exhibiting increases of 688 +/- 635, 207 +/- 49, and 230 +/- 60%, respectively, versus an 8.8-fold enhancement of CYP3A4 mRNA levels. Dexamethasone (10 microM) treatment enhanced CYP2C8 mRNA (360 +/- 100%) and protein (274%) content, although this steroid had less effect on CYP2C9 and CYP2C19 transcripts (23 +/- 21% and 21 +/- 36%, respectively) and enzyme levels (55 and 143%, respectively). Phenobarbital (100 microM) was a powerful inducer of CYP2C9 (850%) and CYP2C19 (735%) mRNA content, and also increased CYP2C8 (610%) and CYP3A4 (205%) transcripts. Our results show that CYP2C enzyme expression in human hepatocytes is highly inducible by rifampicin, dexamethasone, and phenobarbital. Because these xenobiotics are ligands and/or activators of the pregnane X receptor and/or constitutive androstane receptor, such orphan nuclear receptors and their response elements may partake in regulating CYP2C gene expression in humans.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Hepatocytes/enzymology , Adult , Aged , Cells, Cultured , Cytochrome P-450 Enzyme System/biosynthesis , Enzyme Induction , Female , Gene Expression Regulation, Enzymologic , Hispanic or Latino , Humans , Isoenzymes/biosynthesis , Isoenzymes/genetics , Male , Middle Aged , Pennsylvania , RNA, Messenger/genetics , Transcription, Genetic , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...