Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 352: 94-98, 2018 10 15.
Article in English | MEDLINE | ID: mdl-28963041

ABSTRACT

In this work, the effect of mild stress (elevated plus maze test, EPM) on the expression of endoplasmic reticulum (ER) stress markers in different brain areas of wild type (WT) and Wfs1-deficient (Wfs1KO) mice was investigated. The following ER stress markers were studied: activating transcription factor 6α (Atf6α), protein kinase-like ER kinase (Perk), X-box binding protein 1 (Xbp1) and its spliced form (Xbp1s), 78-kilodalton glucose regulated protein (Grp78), 94-kilodalton glucose regulated protein (Grp94), C/EBP homologous protein (Chop). Wfs1KO and WT mice, not exposed to EPM, had similar patterns of ER stress markers in the studied brain areas. The exploratory activity of Wfs1KO mice in the EPM was inhibited compared to WT mice, probably reflecting increased anxiety in genetically modified mice. In response to the EPM, activation of inositol-requiring transmembrane kinase and endonuclease 1α (Ire1α) ER stress pathway was seen in both genotypes, but in different brain areas. Such a brain region-specific Ire1α activation was linked with dominant behavioural trends in these mice as more anxious, neophobic Wfs1KO mice had increased ER stress markers expression in the temporal lobe, the brain region related to anxiety, and more curious WT mice had ER stress markers increased in the ventral striatum which is related to the exploratory drive. The molecular mechanism triggering respective changes in ER stress markers in these brain regions is likely related to altered levels of monoamine neurotransmitters (serotonin, dopamine) in Wfs1KO mice.


Subject(s)
Brain/metabolism , Endoplasmic Reticulum Stress/physiology , Membrane Proteins/deficiency , Animals , Anxiety/metabolism , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Exploratory Behavior/physiology , Female , Membrane Proteins/genetics , Mice, Knockout , RNA, Messenger/metabolism , Wolfram Syndrome/metabolism , Wolfram Syndrome/psychology
2.
J Neurosci Res ; 93(3): 530-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25385034

ABSTRACT

Mutations in the WFS1 gene, which encodes the endoplasmic reticulum (ER) glycoprotein, cause Wolfram syndrome, a disease characterized by juvenile-onset diabetes mellitus, optic atrophy, deafness, and different psychiatric abnormalities. Loss of neuronal cells and pancreatic ß-cells in Wolfram syndrome patients is probably related to the dysfunction of ER stress regulation, which leads to cell apoptosis. The present study shows that Wfs1-deficient mice have brain-region-specific changes in Na(+),K(+)-ATPase activity and in the expression of the α1 and ß1 subunits. We found a significant (1.6-fold) increase of Na-pump activity and ß1 subunit mRNA expression in mice lacking the Wfs1 gene in the temporal lobe compared with their wild-type littermates. By contrast, exposure of mice to the elevated plus maze (EPM) model of anxiety decreased Na-pump activity 1.3-fold in the midbrain and dorsal striatum and 2.0-fold in the ventral striatum of homozygous animals compared with the nonexposed group. Na-pump α1 -subunit mRNA was significantly decreased in the dorsal striatum and midbrain of Wfs1-deficient homozygous animals compared with wild-type littermates. In the temporal lobe, an increase in the activity of the Na-pump is probably related to increased anxiety established in Wfs1-deficient mice, whereas the blunted dopamine function in the forebrain of Wfs1-deficient mice may be associated with a decrease of Na-pump activity in the dorsal and ventral striatum and in the midbrain after exposure to the EPM.


Subject(s)
Corpus Striatum/metabolism , Membrane Proteins/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Temporal Lobe/metabolism , Animals , Membrane Proteins/metabolism , Mice , Organ Specificity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium-Potassium-Exchanging ATPase/genetics
3.
J Psychopharmacol ; 24(6): 905-13, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19346280

ABSTRACT

Male Wistar rats exhibit significant variations in exploratory behaviour in the elevated plus-maze (EPM) model of anxiety. We have now investigated the relation between exploratory behaviour and levels of corticosterone and systemic oxidative stress. Also, the expression levels of endocannabinoid-related and wolframin (Wfs1) genes were measured in the forebrain structures. The rats were divided into high, intermediate and low exploratory activity groups. Exposure to EPM significantly elevated the serum levels of corticosterone in all rats, but especially in the high exploratory group. Oxidative stress indices and expression of endocannabinoid-related genes were not significantly affected by exposure to EPM. Wfs1 mRNA level was highly dependent on exploratory behaviour of animals. In low exploratory activity rats, Wfs1 gene expression was reduced in the temporal lobe, whereas in high exploratory activity group it was reduced in the mesolimbic area and hippocampus. Altogether, present study indicates that in high exploratory activity rats, the activation of brain areas related to novelty seeking is apparent, whereas in low exploratory activity group the brain structures linked to anxiety are activated.


Subject(s)
Brain/metabolism , Calmodulin-Binding Proteins/genetics , Corticosterone/blood , Exploratory Behavior/physiology , Membrane Proteins/genetics , Analysis of Variance , Animals , Anxiety/blood , Anxiety/genetics , Anxiety/metabolism , Behavior, Animal/physiology , Calmodulin-Binding Proteins/metabolism , Gene Expression , Male , Membrane Proteins/metabolism , Oxidative Stress/physiology , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...