Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 855096, 2022.
Article in English | MEDLINE | ID: mdl-35663558

ABSTRACT

Repetitive head impacts (RHI) and traumatic brain injuries are risk factors for the neurodegenerative diseases chronic traumatic encephalopathy (CTE) and amyotrophic lateral sclerosis (ALS). ALS and CTE are distinct disorders, yet in some instances, share pathology, affect similar brain regions, and occur together. The pathways involved and biomarkers for diagnosis of both diseases are largely unknown. MicroRNAs (miRNAs) involved in gene regulation may be altered in neurodegeneration and be useful as stable biomarkers. Thus, we set out to determine associations between miRNA levels and disease state within the prefrontal cortex in a group of brain donors with CTE, ALS, CTE + ALS and controls. Of 47 miRNAs previously implicated in neurological disease and tested here, 28 (60%) were significantly different between pathology groups. Of these, 21 (75%) were upregulated in both ALS and CTE, including miRNAs involved in inflammatory, apoptotic, and cell growth/differentiation pathways. The most significant change occurred in miR-10b, which was significantly increased in ALS, but not CTE or CTE + ALS. Overall, we found patterns of miRNA expression that are common and unique to CTE and ALS and that suggest shared and distinct mechanisms of pathogenesis.

2.
Brain Pathol ; 30(6): 1028-1040, 2020 11.
Article in English | MEDLINE | ID: mdl-32633852

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting both the upper and lower motor neurons. Although ALS typically leads to death within 3 to 5 years after initial symptom onset, approximately 10% of patients with ALS live more than 10 years after symptom onset. We set out to determine similarities and differences in clinical presentation and neuropathology in persons with ALS with long vs. those with standard duration. Participants were United States military Veterans with a pathologically confirmed diagnosis of ALS (n = 179), dichotomized into standard duration (<10 years) and long-duration (≥10 years). The ALS Functional Rating Scale-Revised (ALSFRS-R) was administered at study entry and semi-annually thereafter until death. Microglial density was determined in a subset of participants. long-duration ALS occurred in 76 participants (42%) with a mean disease duration of 16.3 years (min/max = 10.1/42.2). Participants with long-duration ALS were younger at disease onset (P = 0.002), had a slower initial ALS symptom progression on the ALSFRS-R (P < 0.001) and took longer to diagnose (P < 0.002) than standard duration ALS. Pathologically, long-duration ALS was associated with less frequent TDP-43 pathology (P < 0.001). Upper motor neuron degeneration was similar; however, long-duration ALS participants had less severe lower motor neuron degeneration at death (P < 0.001). In addition, the density of microglia was decreased in the corticospinal tract (P = 0.017) and spinal cord anterior horn (P = 0.009) in long-duration ALS. Notably, many neuropathological markers of ALS were similar between the standard and long-duration groups and there was no difference in the frequency of known ALS genetic mutations. These findings suggest that the lower motor neuron system is relatively spared in long-duration ALS and that pathological progression is likely slowed by as yet unknown genetic and environmental modifiers.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Microglia/pathology , Motor Neurons/pathology , Pyramidal Tracts/pathology , Spinal Cord/pathology , Aged , Disease Progression , Female , Humans , Male , Veterans
3.
Cell Chem Biol ; 23(7): 849-861, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27427231

ABSTRACT

There are currently no disease-modifying therapies for the neurodegenerative disorder Huntington's disease (HD). This study identified novel thiazole-containing inhibitors of the deacetylase sirtuin-2 (SIRT2) with neuroprotective activity in ex vivo brain slice and Drosophila models of HD. A systems biology approach revealed an additional SIRT2-independent property of the lead-compound, MIND4, as an inducer of cytoprotective NRF2 (nuclear factor-erythroid 2 p45-derived factor 2) activity. Structure-activity relationship studies further identified a potent NRF2 activator (MIND4-17) lacking SIRT2 inhibitory activity. MIND compounds induced NRF2 activation responses in neuronal and non-neuronal cells and reduced production of reactive oxygen species and nitrogen intermediates. These drug-like thiazole-containing compounds represent an exciting opportunity for development of multi-targeted agents with potentially synergistic therapeutic benefits in HD and related disorders.


Subject(s)
Disease Models, Animal , Huntington Disease/drug therapy , NF-E2-Related Factor 2/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Sirtuin 2/antagonists & inhibitors , Thiazoles/pharmacology , Thiazoles/therapeutic use , Animals , Cell Line , Dose-Response Relationship, Drug , Drosophila , Huntington Disease/metabolism , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Rats , Sirtuin 2/deficiency , Sirtuin 2/metabolism , Structure-Activity Relationship , Thiazoles/chemistry
4.
PLoS One ; 10(1): e0116919, 2015.
Article in English | MEDLINE | ID: mdl-25608039

ABSTRACT

Sirtuin deacetylases regulate diverse cellular pathways and influence disease processes. Our previous studies identified the brain-enriched sirtuin-2 (SIRT2) deacetylase as a potential drug target to counteract neurodegeneration. In the present study, we characterize SIRT2 inhibition activity of the brain-permeable compound AK7 and examine the efficacy of this small molecule in models of Parkinson's disease, amyotrophic lateral sclerosis and cerebral ischemia. Our results demonstrate that AK7 is neuroprotective in models of Parkinson's disease; it ameliorates alpha-synuclein toxicity in vitro and prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine depletion and dopaminergic neuron loss in vivo. The compound does not show beneficial effects in mouse models of amyotrophic lateral sclerosis and cerebral ischemia. These findings underscore the specificity of protective effects observed here in models of Parkinson's disease, and previously in Huntington's disease, and support the development of SIRT2 inhibitors as potential therapeutics for the two neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Benzamides/administration & dosage , Brain Ischemia/physiopathology , Neuroprotective Agents/administration & dosage , Parkinson Disease/prevention & control , Sirtuin 2/antagonists & inhibitors , Small Molecule Libraries/administration & dosage , Sulfonamides/administration & dosage , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Animals , Benzamides/pharmacology , Cell Line , Disease Models, Animal , Humans , Male , Mice , Neuroprotective Agents/pharmacology , Parkinson Disease/metabolism , Small Molecule Libraries/pharmacology , Sulfonamides/pharmacology , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...