Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
mBio ; 12(6): e0135221, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34749530

ABSTRACT

The parasite Trypanosoma brucei periodically changes the expression of protective variant surface glycoproteins (VSGs) to evade its host's immune system in a process known as antigenic variation. One route to change VSG expression is the transcriptional activation of a previously silent VSG expression site (ES), a subtelomeric region containing the VSG genes. Homologous recombination of a different VSG from a large reservoir into the active ES represents another route. The conserved histone methyltransferase DOT1B is involved in transcriptional silencing of inactive ES and influences ES switching kinetics. The molecular machinery that enables DOT1B to execute these regulatory functions remains elusive, however. To better understand DOT1B-mediated regulatory processes, we purified DOT1B-associated proteins using complementary biochemical approaches. We identified several novel DOT1B interactors. One of these was the RNase H2 complex, previously shown to resolve RNA-DNA hybrids, maintain genome integrity, and play a role in antigenic variation. Our study revealed that DOT1B depletion results in an increase in RNA-DNA hybrids, accumulation of DNA damage, and ES switching events. Surprisingly, a similar pattern of VSG deregulation was observed in RNase H2 mutants. We propose that both proteins act together in resolving R-loops to ensure genome integrity and contribute to the tightly regulated process of antigenic variation. IMPORTANCE Trypanosoma brucei is a unicellular parasite that causes devastating diseases like sleeping sickness in humans and the "nagana" disease in cattle in Africa. Fundamental to the establishment and prolongation of a trypanosome infection is the parasite's ability to escape the mammalian host's immune system by antigenic variation, which relies on periodic changes of a protein surface coat. The exact mechanisms, however, which mediate these changes are still elusive. In this work, we describe a novel protein complex consisting of the histone methyltransferase DOT1B and RNase H2 which is involved in antigenic variation.


Subject(s)
Histone Methyltransferases/metabolism , Protozoan Proteins/metabolism , Ribonuclease H/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Trypanosomiasis/parasitology , Antigenic Variation , Genome, Protozoan , Genomic Instability , Histone Methyltransferases/chemistry , Histone Methyltransferases/genetics , Humans , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , R-Loop Structures , Ribonuclease H/chemistry , Ribonuclease H/genetics , Trypanosoma brucei brucei/chemistry , Trypanosoma brucei brucei/enzymology
2.
Dis Model Mech ; 14(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-34125184

ABSTRACT

Parkinson's disease (PD) provokes bradykinesia, resting tremor, rigidity and postural instability, and also non-motor symptoms such as depression, anxiety, sleep and cognitive impairments. Similar phenotypes can be induced in Drosophila melanogaster through modification of PD-relevant genes or the administration of PD-inducing toxins. Recent studies correlated deregulation of human p21-activated kinase 4 (PAK4) with PD, leaving open the question of a causative relationship of mutations in this gene for manifestation of PD symptoms. To determine whether flies lacking the PAK4 homolog Mushroom bodies tiny (Mbt) show PD-like phenotypes, we tested for a variety of PD criteria. Here, we demonstrate that mbt mutant flies show PD-like phenotypes including age-dependent movement deficits, reduced life expectancy and fragmented sleep. They also react to a stressful situation with higher immobility, indicating an influence of Mbt on emotional behavior. Loss of Mbt function has a negative effect on the number of dopaminergic protocerebral anterior medial (PAM) neurons, most likely caused by a proliferation defect of neural progenitors. The age-dependent movement deficits are not accompanied by a corresponding further loss of PAM neurons. Previous studies highlighted the importance of a small PAM subgroup for age-dependent PD motor impairments. We show that impaired motor skills are caused by a lack of Mbt in this PAM subgroup. In addition, a broader re-expression of Mbt in PAM neurons improves life expectancy. Conversely, selective Mbt knockout in the same cells shortens lifespan. We conclude that mutations in Mbt/PAK4 can play a causative role in the development of PD phenotypes.


Subject(s)
Parkinson Disease/genetics , Phenotype , p21-Activated Kinases/genetics , Animals , Drosophila/physiology , Gene Knockdown Techniques , Life Expectancy , Motor Activity/genetics , Neurons/physiology , Sleep/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...