Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1707: 464307, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37619255

ABSTRACT

Ultrafast affinity extraction (UAE) is a form of microscale affinity HPLC that can be employed to quickly measure equilibrium constants for solute-binding agent interactions in solution. This study used chromatographic and equilibrium theory with universal plots to examine the general conditions that are needed in UAE to obtain accurate, precise, and robust measurements of equilibrium constants for such interactions. The predicted results were compared to those obtained by UAE in studies that examined the binding of various drugs with two transport proteins: human serum albumin and α1-acid glycoprotein. The most precise and robust conditions for these binding studies occurred for systems with intermediate values for their equilibrium free fraction for the solute (F0 ≈ 0.20-0.80). These trends showed good agreement with those seen in prior studies using UAE. It was further determined how the apparent free fraction of a solute was related to the dissociation rate of this solute, the time allowed for solute dissociation during UAE, and the equilibrium free fraction for the solute. These results also agreed with experimental results, as obtained for the binding of warfarin and gliclazide with human serum albumin. The final section examined how a change in the apparent free fraction, as caused by solute dissociation, affected the accuracy of an equilibrium constant that was measured by UAE. In addition, theoretical plots were generated to allow the selection of conditions for UAE that provided a given level of accuracy during the measurement of an equilibrium constant. The equations created and trends identified for UAE were general ones that can be extended in future work to other solutes and binding agents.


Subject(s)
Gliclazide , Humans , Chromatography, High Pressure Liquid , Orosomucoid , Serum Albumin, Human , Warfarin
2.
Anal Chim Acta ; 1239: 340629, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36628740

ABSTRACT

Reversible interactions between drugs and humic acid in water can be an important factor in determining the bioavailability and effects of these pharmaceuticals as micropollutants in the environment. In this study, microcolumns containing entrapped humic acid were used in high-performance affinity chromatography (HPAC) to examine the binding of this agent with the drugs tetracycline, carbamazepine, ciprofloxacin, and norfloxacin. Parameters that were varied to optimize the entrapment of humic acid within HPLC-grade porous silica included the starting concentration of humic acid, the mass ratio of humic acid vs silica, and the method of mixing the reagents with the support for the entrapment process. The highest retention for the tested drugs was obtained when using supports that were prepared using an initial humic acid concentration of 80 mg mL-1 and a humic acid vs silica mass ratio of 600 mg per g silica, along with preincubation of the humic acid with hydrazide-activated silica before the addition of a capping agent (i.e., oxidized glycogen). Characterization of the humic acid support was also carried out by means of TGA, FTIR, SEM, and energy-dispersive X-ray spectroscopy. The binding constants measured by HPAC for the given drugs with entrapped Aldrich humic acid gave good agreement with values reported in the literature under similar pH and temperature conditions for this and other forms of humic acid. Besides providing valuable data on the binding strength of various drugs with humic acid, this work illustrates how HPAC may be used as an analytical tool for screening and characterizing the interactions of drugs and man-made contaminants with humic acid or related binding agents in water and the environment.


Subject(s)
Humic Substances , Serum Albumin , Humans , Serum Albumin/chemistry , Carbamazepine , Chromatography, Affinity/methods , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...