Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 631(8020): 307-312, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898280

ABSTRACT

Spin accumulation in semiconductor structures at room temperature and without magnetic fields is key to enable a broader range of optoelectronic functionality1. Current efforts are limited owing to inherent inefficiencies associated with spin injection across semiconductor interfaces2. Here we demonstrate spin injection across chiral halide perovskite/III-V interfaces achieving spin accumulation in a standard semiconductor III-V (AlxGa1-x)0.5In0.5P multiple quantum well light-emitting diode. The spin accumulation in the multiple quantum well is detected through emission of circularly polarized light with a degree of polarization of up to 15 ± 4%. The chiral perovskite/III-V interface was characterized with X-ray photoelectron spectroscopy, cross-sectional scanning Kelvin probe force microscopy and cross-sectional transmission electron microscopy imaging, showing a clean semiconductor/semiconductor interface at which the Fermi level can equilibrate. These findings demonstrate that chiral perovskite semiconductors can transform well-developed semiconductor platforms into ones that can also control spin.

2.
J Am Chem Soc ; 145(4): 2052-2057, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36649211

ABSTRACT

The development of metal halide perovskite/perovskite heterostructures is hindered by rapid interfacial halide diffusion leading to mixed alloys rather than sharp interfaces. To circumvent this outcome, we developed an ion-blocking layer consisting of single-layer graphene (SLG) deposited between the metal halide perovskite layers and demonstrated that it effectively blocks anion diffusion in a CsPbBr3/SLG/CsPbI3 heterostructure. Spatially resolved elemental analysis and spectroscopic measurements demonstrate the halides do not diffuse across the interface, whereas control samples without the SLG show rapid homogenization of the halides and loss of the sharp interface. Ultraviolet photoelectron spectroscopy, DFT calculations, and transient absorbance spectroscopy indicate the SLG has little electronic impact on the individual semiconductors. In the CsPbBr3/SLG/CsPbI3, we find a type I band alignment that supports transfer of photogenerated carriers across the heterointerface. Light-emitting diodes (LEDs) show electroluminescence from both the CsPbBr3 and CsPbI3 layers with no evidence of ion diffusion during operation. Our approach provides opportunities to design novel all-perovskite heterostructures to facilitate the control of charge and light in optoelectronic applications.

3.
J Am Chem Soc ; 144(49): 22676-22688, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36450151

ABSTRACT

Semiconductor nanocrystals (NCs) interfaced with molecular ligands that function as charge and energy acceptors are an emerging platform for the design of light-harvesting, photon-upconverting, and photocatalytic materials. However, NC systems explored for these applications often feature high concentrations of bound acceptor ligands, which can lead to ligand-ligand interactions that may alter each system's ability to undergo charge and energy transfer. Here, we demonstrate that aggregation of acceptor ligands impacts the rate of photoinduced NC-to-ligand charge transfer between lead(II) sulfide (PbS) NCs and perylenediimide (PDI) electron acceptors. As the concentration of PDI acceptors is increased, we find the average electron transfer rate from PbS to PDI ligands decreases by nearly an order of magnitude. The electron transfer rate slowdown with increasing PDI concentration correlates strongly with the appearance of PDI aggregates in steady-state absorption spectra. Electronic structure calculations and molecular dynamics (MD) simulations suggest PDI aggregation slows the rate of electron transfer by reducing orbital overlap between PbS charge donors and PDI charge acceptors. While we find aggregation slows electron transfer in this system, the computational models we employ predict ligand aggregation could also be used to speed electron transfer by producing delocalized states that exhibit improved NC-molecule electronic coupling and energy alignment with NC conduction band states. Our results demonstrate that ligand aggregation can alter rates of photoinduced electron transfer between NCs and organic acceptor ligands and should be considered when designing hybrid NC:molecule systems for charge separation.


Subject(s)
Electrons , Nanoparticles , Ligands , Imides/chemistry
4.
J Phys Chem Lett ; 13(6): 1416-1423, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35119280

ABSTRACT

Semiconductor nanocrystals (NCs) have emerged as promising photocatalysts. However, NCs are often functionalized with complex ligand shells that contain not only charge acceptors but also other "spectator ligands" that control NC solubility and affinity for target reactants. Here, we show that spectator ligands are not passive observers of photoinduced charge transfer but rather play an active role in this process. We find the rate of electron transfer from quantum-confined PbS NCs to perylenediimide acceptors can be varied by over a factor of 4 simply by coordinating cinnamate ligands with distinct dipole moments to NC surfaces. Theoretical calculations indicate this rate variation stems from both ligand-induced changes in the free energy for charge transfer and electrostatic interactions that alter perylenediimide electron acceptor orientation on NC surfaces. Our work shows NC-to-molecule charge transfer can be fine-tuned through ligand shell design, giving researchers an additional handle for enhancing NC photocatalysis.

5.
Chem Sci ; 12(33): 11146-11156, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34522312

ABSTRACT

Photoinduced electron transfer into mesoporous oxide substrates is well-known to occur efficiently for both singlet and triplet excited states in conventional metal-to-ligand charge transfer (MLCT) dyes. However, in all-organic dyes that have the potential for producing two triplet states from one absorbed photon, called singlet fission dyes, the dynamics of electron injection from singlet vs. triplet excited states has not been elucidated. Using applied bias transient absorption spectroscopy with an anthradithiophene-based chromophore (ADT-COOH) adsorbed to mesoporous indium tin oxide (nanoITO), we modulate the driving force and observe changes in electron injection dynamics. ADT-COOH is known to undergo fast triplet pair formation in solid-state films. We find that the electronic coupling at the interface is roughly one order of magnitude weaker for triplet vs. singlet electron injection, which is potentially related to the highly localized nature of triplets without significant charge-transfer character. Through the use of applied bias on nanoITO:ADT-COOH films, we map the electron injection rate constant dependence on driving force, finding negligible injection from triplets at zero bias due to competing recombination channels. However, at driving forces greater than -0.6 eV, electron injection from the triplet accelerates and clearly produces a trend with increased applied bias that matches predictions from Marcus theory with a metallic acceptor.

6.
J Am Chem Soc ; 142(34): 14733-14742, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32786788

ABSTRACT

The driving of rapid polymerizations with visible to near-infrared light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. The improvement of efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to far-red light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (<1 mW/cm2) and catalyst loadings (<50 µM), exemplified by reaction completion within 60 s of irradiation using green, red, and far-red light-emitting diodes. Halogenated BODIPY photoredox catalysts were additionally employed to produce complex 3D structures using high-resolution visible light 3D printing, demonstrating the broad utility of these catalysts in additive manufacturing.

7.
Nat Chem ; 12(2): 137-144, 2020 02.
Article in English | MEDLINE | ID: mdl-31792389

ABSTRACT

Inorganic semiconductor nanocrystals interfaced with spin-triplet exciton-accepting organic molecules have emerged as promising materials for converting incoherent long-wavelength light into the visible range. However, these materials to date have made exclusive use of nanocrystals containing toxic elements, precluding their use in biological or environmentally sensitive applications. Here, we address this challenge by chemically functionalizing non-toxic silicon nanocrystals with triplet-accepting anthracene ligands. Photoexciting these structures drives spin-triplet exciton transfer from silicon to anthracene through a single 15 ns Dexter energy transfer step with a nearly 50% yield. When paired with 9,10-diphenylanthracene emitters, these particles readily upconvert 488-640 nm photons to 425 nm violet light with efficiencies as high as 7 ± 0.9% and can be readily incorporated into aqueous micelles for biological use. Our demonstration of spin-triplet exciton transfer from silicon to molecular triplet acceptors can critically enable new technologies for solar energy conversion, quantum information and near-infrared driven photocatalysis.

8.
J Am Chem Soc ; 140(24): 7543-7553, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29846066

ABSTRACT

Hybrid organic:inorganic materials composed of semiconductor nanocrystals functionalized with acene ligands have recently emerged as a promising platform for photon upconversion. Infrared light absorbed by a nanocrystal excites charge carriers that can pass to surface-bound acenes, forming triplet excitons capable of fusing to produce visible radiation. To fully realize this scheme, energy transfer between nanocrystals and acenes must occur with high efficiency, yet the mechanism of this process remains poorly understood. To improve our knowledge of the fundamental steps involved in nanoparticle:acene energy transfer, we used ultrafast transient absorption to investigate excited electronic dynamics of PbS nanocrystals chemically functionalized with 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) ligands. We find photoexcitation of PbS does not lead to direct triplet energy transfer to surface-bound TIPS-pentacene molecules but rather to the formation of an intermediate state within 40 ps. This intermediate persists for ∼100 ns before evolving to produce TIPS-pentacene triplet excitons. Analysis of transient absorption lineshapes suggests this intermediate corresponds to charge carriers localized at the PbS nanocrystal surface. This hypothesis is supported by constrained DFT calculations that find a large number of spin-triplet states at PbS NC surfaces. Though some of these states can facilitate triplet transfer, others serve as traps that hinder it. Our results highlight that nanocrystal surfaces play an active role in mediating energy transfer to bound acene ligands and must be considered when optimizing composite NC-based materials for photon upconversion, photocatalysis, and other optoelectronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...