Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798354

ABSTRACT

Platelets are highly reactive fragments of megakaryocytes that play a fundamental role in thrombosis and hemostasis. Predictably, all conventional anti-platelet therapies elicit bleeding, raising the question whether the thrombotic activity of platelets can be targeted separately. In this study, we describe a novel approach of inhibiting platelet activation through the use of bispecific single-chain variable fragments (bi-scFvs), termed cis-acting platelet receptor inhibitors (CAPRIs) that harness the immunoreceptor tyrosine-based inhibition motif (ITIM)-containing co-inhibitory receptor G6b-B (G6B) to suppress immunoreceptor tyrosine-based (ITAM)-containing receptor-mediated platelet activation. CAPRI-mediated hetero-clustering of G6B with either the ITAM-containing GPVI-FcR γ-chain complex or FcγRIIA (CD32A) inhibited collagen- or immune complex-induced platelet aggregation. G6B-GPVI CAPRIs strongly and specifically inhibited thrombus formation on collagen under arterial shear, whereas G6B-CD32A CAPRI strongly and specifically inhibited thrombus formation to heparin-induced thrombocytopenia, vaccine-induced thrombotic thrombocytopenia and antiphospholipid syndrome complexes on Von Willebrand Factor-coated surfaces and photochemical-injured endothelial cells under arterial shear. Our findings provide proof-of-concept that CAPRIs are highly effective at inhibiting ITAM receptor-mediated platelet activation, laying the foundation for a novel family of anti-thrombotic therapeutics with potentially improved efficacy and fewer bleeding outcomes compared with current anti-platelet therapies. .

2.
JCI Insight ; 8(22)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991024

ABSTRACT

Plasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation. However, NET digestion liberates pathogens and releases cfDNA that promote thrombosis and endothelial cell injury. We propose an alternative strategy of cfDNA and NET stabilization with chemokine platelet factor 4 (PF4, CXCL4). We previously showed that human PF4 (hPF4) enhances NET-mediated microbial entrapment. We now show that hPF4 interferes with thrombogenicity of cfDNA and NETs by preventing their cleavage to short-fragment and single-stranded cfDNA that more effectively activates the contact pathway of coagulation. In vitro, hPF4 also inhibits cfDNA-induced endothelial tissue factor surface expression and von Willebrand factor release. In vivo, hPF4 expression reduced plasma thrombin-antithrombin (TAT) levels in animals infused with exogenous cfDNA. Following lipopolysaccharide challenge, Cxcl4-/- mice had significant elevation in plasma TAT, cfDNA, and cystatin C levels, effects prevented by hPF4 infusion. These results show that hPF4 interacts with cfDNA and NETs to limit thrombosis and endothelial injury, an observation of potential clinical benefit in the treatment of sepsis.


Subject(s)
Cell-Free Nucleic Acids , Extracellular Traps , Sepsis , Thrombosis , Humans , Mice , Animals , Extracellular Traps/metabolism , Platelet Factor 4/genetics , Thrombosis/metabolism , Inflammation/metabolism , Thrombin/metabolism , Immunologic Factors , Cell-Free Nucleic Acids/metabolism
3.
Blood Adv ; 7(15): 4112-4123, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37196641

ABSTRACT

Heparin-induced thrombocytopenia (HIT) is characterized by thrombocytopenia associated with a highly prothrombotic state due to the development of pathogenic antibodies that recognize human platelet factor 4 (hPF4) complexed with various polyanions. Although nonheparin anticoagulants are the mainstay of care in HIT, subsequent bleeding may develop, and the risk of developing new thromboembolic events remain. We previously described a mouse immunoglobulin G2bκ (IgG2bκ) antibody KKO that mimics the sentinel features of pathogenic HIT antibodies, including binding to the same neoepitope on hPF4-polyanion complexes. KKO, like HIT IgGs, activates platelets through FcγRIIA and induces complement activation. We then questioned whether Fc-modified KKO could be used as a novel therapeutic to prevent or treat HIT. Using the endoglycosidase EndoS, we created deglycosylated KKO (DGKKO). Although DGKKO retained binding to PF4-polyanion complexes, it inhibited FcγRIIA-dependent activation of PF4-treated platelets triggered by unmodified KKO, 5B9 (another HIT-like monoclonal antibody), and IgGs isolated from patients with HIT. DGKKO also decreased complement activation and deposition of C3c on platelets. Unlike the anticoagulant fondaparinux, injection of DGKKO into HIT mice lacking mouse PF4, but transgenic for hPF4 and FcγRIIA, prevented and reversed thrombocytopenia when injected before or after unmodified KKO, 5B9, or HIT IgG. DGKKO also reversed antibody-induced thrombus growth in HIT mice. In contrast, DGKKO was ineffective in preventing thrombosis induced by IgG from patients with the HIT-related anti-PF4 prothrombotic disorder, vaccine-induced immune thrombotic thrombocytopenia. Thus, DGKKO may represent a new class of therapeutics for targeted treatment of patients with HIT.


Subject(s)
Thrombocytopenia , Thrombosis , Mice , Humans , Animals , Heparin/adverse effects , Thrombocytopenia/chemically induced , Thrombocytopenia/drug therapy , Anticoagulants/adverse effects , Antibodies, Monoclonal/adverse effects , Thrombosis/chemically induced , Immunoglobulin G
4.
bioRxiv ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36711969

ABSTRACT

Neutrophil extracellular traps (NETs) are abundant in sepsis, and proposed NET-directed therapies in sepsis prevent their formation or accelerate degradation. Yet NETs are important for microbial entrapment, as NET digestion liberates pathogens and NET degradation products (NDPs) that deleteriously promote thrombosis and endothelial cell injury. We proposed an alternative strategy of NET-stabilization with the chemokine, platelet factor 4 (PF4, CXCL4), which we have shown enhances NET-mediated microbial entrapment. We now show that NET compaction by PF4 reduces their thrombogenicity. In vitro, we quantified plasma thrombin and fibrin generation by intact or degraded NETs and cell-free (cf) DNA fragments, and found that digested NETs and short DNA fragments were more thrombogenic than intact NETs and high molecular weight genomic DNA, respectively. PF4 reduced the thrombogenicity of digested NETs and DNA by interfering, in part, with contact pathway activation. In endothelial cell culture studies, short DNA fragments promoted von Willebrand factor release and tissue factor expression via a toll-like receptor 9-dependent mechanism. PF4 blocked these effects. Cxcl4-/- mice infused with cfDNA exhibited higher plasma thrombin anti-thrombin (TAT) levels compared to wild-type controls. Following challenge with bacterial lipopolysaccharide, Cxcl4-/- mice had similar elevations in plasma TAT and cfDNA, effects prevented by PF4 infusion. Thus, NET-stabilization by PF4 prevents the release of short fragments of cfDNA, limiting the activation of the contact coagulation pathway and reducing endothelial injury. These results support our hypothesis that NET-stabilization reduces pathologic sequelae in sepsis, an observation of potential clinical benefit.

5.
Sci Transl Med ; 15(677): eadc9606, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599005

ABSTRACT

Degenerative mitral valve (MV) regurgitation (MR) is a highly prevalent heart disease that requires surgery in severe cases. Here, we show that a decrease in the activity of the serotonin transporter (SERT) accelerates MV remodeling and progression to MR. Through studies of a population of patients with MR, we show that selective serotonin reuptake inhibitor (SSRI) use and SERT promoter polymorphism 5-HTTLPR LL genotype were associated with MV surgery at younger age. Functional characterization of 122 human MV samples, in conjunction with in vivo studies in SERT-/- mice and wild-type mice treated with the SSRI fluoxetine, showed that diminished SERT activity in MV interstitial cells (MVICs) contributed to the pathophysiology of MR through enhanced serotonin receptor (HTR) signaling. SERT activity was decreased in LL MVICs partially because of diminished membrane localization of SERT. In mice, fluoxetine treatment or SERT knockdown resulted in thickened MV leaflets. Similarly, silencing of SERT in normal human MVICs led to up-regulation of transforming growth factor ß1 (TGFß1) and collagen (COL1A1) in the presence of serotonin. In addition, treatment of MVICs with fluoxetine not only directly inhibited SERT activity but also decreased SERT expression and increased HTR2B expression. Fluoxetine treatment and LL genotype were also associated with increased COL1A1 expression in the presence of serotonin in MVICs, and these effects were attenuated by HTR2B inhibition. These results suggest that assessment of both 5-HTTLPR genotype and SERT-inhibiting treatments may be useful tools to risk-stratify patients with MV disease to estimate the likelihood of rapid disease progression.


Subject(s)
Mitral Valve Insufficiency , Mitral Valve , Humans , Animals , Mice , Mitral Valve/metabolism , Mitral Valve Insufficiency/metabolism , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Fluoxetine/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin/metabolism , Serotonin/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use
6.
J Thromb Haemost ; 21(3): 652-666, 2023 03.
Article in English | MEDLINE | ID: mdl-36696211

ABSTRACT

BACKGROUND: Heparin-induced thrombocytopenia (HIT) is a serious thrombotic disorder caused by ultralarge immune complexes (ULICs) containing platelet factor 4 (PF4) and heparin that form the HIT antigen, together with a subset of anti-PF4 antibodies. ULICs initiate prothrombotic responses by engaging Fcγ receptors on platelets, neutrophils, and monocytes. Contemporary anti-thrombotic therapy for HIT is neither entirely safe nor entirely successful and acts downstream of ULIC formation and Fcγ receptor-initiated generation of thrombin. OBJECTIVES: To determine whether HIT antigen and ULIC formation and stability could be modified favorably by inhibiting PF4-heparin interactions with fondaparinux, together with blocking formation of PF4 tetramers using a humanized monoclonal anti-PF4 antibody (hRTO). METHODS: Results: The combination of fondaparinux and hRTO inhibited HIT antigen formation, promoted antigen dissociation, inhibited ULIC formation, and promoted ULIC disassembly at concentrations below the effective concentration of either alone and blocked Fcγ receptor-dependent induction of factor Xa activity by monocytic THP1 cells and activation of human platelets in whole blood. Combined with hRTO, fondaparinux inhibited HIT antigen and immune complex formation and activation through Fcγ receptors at concentrations at or below those used clinically to inhibit FXa coagulant activity. CONCLUSIONS: HIT antigen and immune complexes are dynamic and amenable to modulation. Fondaparinux can be converted from an anticoagulant that acts at a downstream amplification step into a rationale, disease-specific intervention that blocks ULIC formation. Interventions that prevent ULIC formation and stability might increase the efficacy, permit use of lower doses, shorten the duration of antithrombotic therapy, and help prevent this serious thrombotic disorder.


Subject(s)
Thrombocytopenia , Thrombosis , Humans , Antibodies, Monoclonal, Humanized/adverse effects , Anticoagulants/adverse effects , Antigen-Antibody Complex , Fondaparinux/adverse effects , Heparin/adverse effects , Platelet Factor 4 , Receptors, IgG , Thrombosis/etiology
7.
Blood ; 140(5): 413-414, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35925641
8.
J Thromb Haemost ; 20(11): 2656-2665, 2022 11.
Article in English | MEDLINE | ID: mdl-35996342

ABSTRACT

BACKGROUND: Anti-platelet factor 4 (PF4)/heparin immune complexes that cause heparin-induced thrombocytopenia (HIT) activate complement via the classical pathway. Previous studies have shown that the alternative pathway of complement substantially amplifies the classical pathway of complement activation through the C3b feedback cycle. OBJECTIVES: These studies sought to examine the contributions of the alternative pathway to complement activation by HIT antibodies. METHODS: Using IgG monoclonal (KKO) and/or patient-derived HIT antibodies, we compared the effects of classical pathway (BBK32 and C1-esterase inhibitor [C1-INH]), alternative pathway (anti-factor B [fB] or factor D [fD] inhibitor) or combined classical and alternative pathway inhibition (soluble complement receptor 1 [sCR1]) in whole blood or plasma. RESULTS: Classical pathway inhibitors BBK32 and C1-INH and the combined classical/alternative pathway inhibitor sCR1 prevented KKO/HIT immune complex-induced complement activation, including release of C3 and C5 activation products, binding of immune complexes to B cells, and neutrophil activation. The alternative pathway inhibitors fB and fD, however, did not affect complement activation by KKO/HIT immune complexes. Similarly, alternative pathway inhibition had no effect on complement activation by unrelated immune complexes consisting of anti-dinitrophenyl (DNP) antibody and the multivalent DNP--keyhole limpet hemocyanin antigen. CONCLUSIONS: Collectively, these findings suggest the alternative pathway contributes little in support of complement activation by HIT immune complexes. Additional in vitro and in vivo studies are required to examine if this property is shared by most IgG-containing immune complexes or if predominance of the classic pathway is limited to immune complexes composed of multivalent antigens.


Subject(s)
Antigen-Antibody Complex , Thrombocytopenia , Humans , Complement Factor D , Heparin/adverse effects , Complement Activation , Complement System Proteins , Immunoglobulin G , Receptors, Complement , Esterases/adverse effects
9.
Front Immunol ; 13: 834988, 2022.
Article in English | MEDLINE | ID: mdl-35309299

ABSTRACT

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.


Subject(s)
Blood Platelets/immunology , COVID-19/immunology , Complement C5a/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/physiology , Thromboembolism/immunology , Adult , Aminopyridines/pharmacology , Cells, Cultured , Female , Hospitalization , Humans , Male , Morpholines/pharmacology , Platelet Activation , Pyrimidines/pharmacology , Severity of Illness Index , Signal Transduction , Syk Kinase/antagonists & inhibitors
10.
Blood ; 139(13): 2050-2065, 2022 03 31.
Article in English | MEDLINE | ID: mdl-34752599

ABSTRACT

Although several members of protein disulfide isomerase (PDI) family support thrombosis, other PDI family members with the CXYC motif remain uninvestigated. ERp46 has 3 CGHC redox-active sites and a radically different molecular architecture than other PDIs. Expression of ERp46 on the platelet surface increased with thrombin stimulation. An anti-ERp46 antibody inhibited platelet aggregation, adenosine triphosphate (ATP) release, and αIIbß3 activation. ERp46 protein potentiated αIIbß3 activation, platelet aggregation, and ATP release, whereas inactive ERp46 inhibited these processes. ERp46 knockout mice had prolonged tail-bleeding times and decreased platelet accumulation in thrombosis models that was rescued by infusion of ERp46. ERp46-deficient platelets had decreased αIIbß3 activation, platelet aggregation, ATP release, and P-selectin expression. The defects were reversed by wild-type ERp46 and partially reversed by ERp46 containing any of the 3 active sites. Platelet aggregation stimulated by an αIIbß3-activating peptide was inhibited by the anti-ERp46 antibody and was decreased in ERp46-deficient platelets. ERp46 bound tightly to αIIbß3 by surface plasmon resonance but poorly to platelets lacking αIIbß3 and physically associated with αIIbß3 upon platelet activation. ERp46 mediated clot retraction and platelet spreading. ERp46 more strongly reduced disulfide bonds in the ß3 subunit than other PDIs and in contrast to PDI, generated thiols in ß3 independently of fibrinogen. ERp46 cleaved the Cys473-Cys503 disulfide bond in ß3, implicating a target for ERp46. Finally, ERp46-deficient platelets have decreased thiols in ß3, implying that ERp46 cleaves disulfide bonds in platelets. In conclusion, ERp46 is critical for platelet function and thrombosis and facilitates αIIbß3 activation by targeting disulfide bonds.


Subject(s)
Hemostasis , Thioredoxins/metabolism , Thrombosis , Animals , Endoplasmic Reticulum/metabolism , Mice , Mice, Knockout , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Thrombosis/genetics , Thrombosis/metabolism
11.
Blood ; 138(4): 285-286, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34323943
12.
Blood ; 138(21): 2106-2116, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34189574

ABSTRACT

Heparin-induced thrombocytopenia (HIT) is a prothrombotic disorder mediated by ultra-large immune complexes (ULICs) containing immunoglobulin G (IgG) antibodies to a multivalent antigen composed of platelet factor 4 and heparin. The limitations of current antithrombotic therapy in HIT supports the need to identify additional pathways that may be targets for therapy. Activation of FcγRIIA by HIT ULICs initiates diverse procoagulant cellular effector functions. HIT ULICs are also known to activate complement, but the contribution of this pathway to the pathogenesis of HIT has not been studied in detail. We observed that HIT ULICs physically interact with C1q in buffer and plasma, activate complement via the classical pathway, promote codeposition of IgG and C3 complement fragments (C3c) on neutrophil and monocyte cell surfaces. Complement activation by ULICs, in turn, facilitates FcγR-independent monocyte tissue factor expression, enhances IgG binding to the cell surface FcγRs, and promotes platelet adhesion to injured endothelium. Inhibition of the proximal, but not terminal, steps in the complement pathway abrogates monocyte tissue factor expression by HIT ULICs. Together, these studies suggest a major role for complement activation in regulating Fc-dependent effector functions of HIT ULICs, identify potential non-anticoagulant targets for therapy, and provide insights into the broader roles of complement in immune complex-mediated thrombotic disorders.


Subject(s)
Anticoagulants/adverse effects , Antigen-Antibody Complex/immunology , Complement Activation , Heparin/adverse effects , Thrombocytopenia/chemically induced , Anticoagulants/immunology , Complement C3/immunology , Heparin/immunology , Humans , Immunoglobulin G/immunology , Platelet Factor 4/immunology , Receptors, IgG/immunology , Thrombocytopenia/complications , Thrombocytopenia/immunology , Thrombosis/etiology , Thrombosis/immunology
13.
bioRxiv ; 2021 May 03.
Article in English | MEDLINE | ID: mdl-33972943

ABSTRACT

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibit higher basal levels of activation measured by P-selectin surface expression, and have a poor functional reserve upon in vitro stimulation. Correlating clinical features to the ability of plasma from COVID-19 patients to stimulate control platelets identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions, thus identifying these potentially actionable pathways as central for platelet activation and/or vascular complications in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect. These studies have implications for the role of platelet hyperactivation in complications associated with SARS-CoV-2 infection. ONE-SENTENCE SUMMARY: The FcγRIIA and C5a-C5aR pathways mediate platelet hyperactivation in COVID-19.

14.
Thromb Res ; 193: 25-30, 2020 09.
Article in English | MEDLINE | ID: mdl-32505081

ABSTRACT

INTRODUCTION: Thrombosis is a severe and frequent complication of heparin-induced thrombocytopenia (HIT). However, there is currently no knowledge of the effects of HIT-like antibodies on the resulting microstructure of the formed clot, despite such information being linked to thrombotic events. We evaluate the effect of the addition of pathogenic HIT-like antibodies to blood on the resulting microstructure of the formed clot. MATERIALS AND METHODS: Pathogenic HIT-like antibodies (KKO) and control antibodies (RTO) were added to samples of whole blood containing Unfractionated Heparin and Platelet Factor 4. The formed clot microstructure was investigated by rheological measurements (fractal dimension; df) and scanning electron microscopy (SEM), and platelet activation was measured by flow cytometry. RESULTS AND CONCLUSIONS: Our results revealed striking effects of KKO on clot microstructure. A significant difference in df was found between samples containing KKO (df = 1.80) versus RTO (df = 1.74; p < 0.0001). This increase in df was often associated with an increase in activated platelets. SEM images of the clots formed with KKO showed a network consisting of a highly branched and compact arrangement of thin fibrin fibres, typically found in thrombotic disease. This is the first study to identify significant changes in clot microstructure formed in blood containing HIT-like antibodies. These observed alterations in clot microstructure can be potentially exploited as a much-needed biomarker for the detection, management and monitoring of HIT-associated thrombosis.


Subject(s)
Thrombocytopenia , Thrombosis , Fibrin , Heparin/adverse effects , Humans , Platelet Factor 4 , Thrombocytopenia/chemically induced
15.
Int J Mol Sci ; 21(7)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272655

ABSTRACT

Heparin-induced thrombocytopenia (HIT) is an adverse drug reaction characterized by thrombocytopenia and a high risk for venous or arterial thrombosis. HIT is caused by antibodies that recognize complexes of platelet factor 4 and heparin. The pathogenic mechanisms of this condition are not fully understood. In this study, we used flow cytometry, fluorimetry, and Western blot analysis to study the direct effects of pathogenic immune complexes containing platelet factor 4 on human platelets isolated by gel-filtration. HIT-like pathogenic immune complexes initially caused pronounced activation of platelets detected by an increased expression of phosphatidylserine and P-selectin. This activation was mediated either directly through the FcγRIIA receptors or indirectly via protease-activated receptor 1 (PAR1) receptors due to thrombin generated on or near the surface of activated platelets. The immune activation was later followed by the biochemical signs of cell death, such as mitochondrial membrane depolarization, up-regulation of Bax, down-regulation of Bcl-XL, and moderate activation of procaspase 3 and increased calpain activity. The results show that platelet activation under the action of HIT-like immune complexes is accompanied by their death through complex apoptotic and calpain-dependent non-apoptotic pathways that may underlie the low platelet count in HIT.


Subject(s)
Apoptosis/physiology , Blood Platelets/physiology , Heparin/physiology , Platelet Activation/physiology , Signal Transduction/physiology , Thrombocytopenia/chemically induced , Anticoagulants/pharmacology , Apoptosis/drug effects , Blood Coagulation/drug effects , Blood Coagulation/physiology , Blood Platelets/drug effects , Blood Platelets/metabolism , Humans , Receptors, IgG/metabolism , Signal Transduction/drug effects , Thrombocytopenia/drug therapy , Thrombocytopenia/metabolism , Thrombosis/drug therapy , Thrombosis/metabolism , Up-Regulation/drug effects , Up-Regulation/physiology
16.
Blood ; 135(23): 2085-2093, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32187355

ABSTRACT

Thromboembolism complicates disorders caused by immunoglobulin G (IgG)-containing immune complexes (ICs), but the underlying mechanisms are incompletely understood. Prior evidence indicates that induction of tissue factor (TF) on monocytes, a pivotal step in the initiation, localization, and propagation of coagulation by ICs, is mediated through Fcγ receptor IIa (FcγRIIa); however, the involvement of other receptors has not been investigated in detail. The neonatal Fc receptor (FcRn) that mediates IgG and albumin recycling also participates in cellular responses to IgG-containing ICs. Here we asked whether FcRn is also involved in the induction of TF-dependent factor Xa (FXa) activity by IgG-containing ICs by THP-1 monocytic cells and human monocytes. Induction of FXa activity by ICs containing IgG antibodies to platelet factor 4 (PF4) involved in heparin-induced thrombocytopenia (HIT), ß-2-glycoprotein-1 implicated in antiphospholipid syndrome, or red blood cells coated with anti-(α)-Rh(D) antibodies that mediate hemolysis in vivo was inhibited by a humanized monoclonal antibody (mAb) that blocks IgG binding to human FcRn. IgG-containing ICs that bind to FcγR and FcRn induced FXa activity, whereas IgG-containing ICs with an Fc engineered to be unable to engage FcRn did not. Infusion of an α-FcRn mAb prevented fibrin deposition after microvascular injury in a murine model of HIT in which human FcγRIIa was expressed as a transgene. These data implicate FcRn in TF-dependent FXa activity induced by soluble and cell-associated IgG-containing ICs. Antibodies to FcRn, now in clinical trials in warm autoimmune hemolytic anemia to lower IgG antibodies and IgG containing ICs may also reduce the risk of venous thromboembolism.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Heparin/toxicity , Histocompatibility Antigens Class I/metabolism , Immunoglobulin G/metabolism , Receptors, Fc/metabolism , Thrombocytopenia/immunology , Thromboplastin/metabolism , Animals , Anticoagulants/toxicity , Antigen-Antibody Complex , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Male , Mice , Monocytes/immunology , Monocytes/metabolism , Monocytes/pathology , Platelet Factor 4/genetics , Platelet Factor 4/metabolism , Receptors, Fc/genetics , Receptors, Fc/immunology , Thrombocytopenia/chemically induced , Thrombocytopenia/metabolism , Thrombocytopenia/pathology
17.
Blood ; 135(15): 1270-1280, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32077913

ABSTRACT

Heparin-induced thrombocytopenia (HIT) is a prothrombotic disorder mediated by complexes between platelet factor 4 (PF4) and heparin or other polyanions, but the risk of thrombosis extends beyond exposure to heparin implicating other PF4 partners. We recently reported that peri-thrombus endothelium is targeted by HIT antibodies, but the binding site(s) has not been identified. We now show that PF4 binds at multiple discrete sites along the surface of extended strings of von Willebrand factor (VWF) released from the endothelium following photochemical injury in an endothelialized microfluidic system under flow. The HIT-like monoclonal antibody KKO and HIT patient antibodies recognize PF4-VWF complexes, promoting platelet adhesion and enlargement of thrombi within the microfluidic channels. Platelet adhesion to the PF4-VWF-HIT antibody complexes is inhibited by antibodies that block FcγRIIA or the glycoprotein Ib-IX complex on platelets. Disruption of PF4-VWF-HIT antibody complexes by drugs that prevent or block VWF oligomerization attenuate thrombus formation in a murine model of HIT. Together, these studies demonstrate assembly of HIT immune complexes along VWF strings released by injured endothelium that might propagate the risk of thrombosis in HIT. Disruption of PF4-VWF complex formation may provide a new therapeutic approach to HIT.


Subject(s)
Antibodies/immunology , Anticoagulants/adverse effects , Heparin/adverse effects , Platelet Factor 4/immunology , Thrombocytopenia/chemically induced , Thrombosis/etiology , von Willebrand Factor/immunology , Animals , Anticoagulants/immunology , Heparin/immunology , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred C57BL , Platelet Adhesiveness , Thrombocytopenia/complications , Thrombocytopenia/immunology , Thrombocytopenia/pathology , Thrombosis/immunology , Thrombosis/pathology
18.
Blood ; 135(10): 743-754, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31722003

ABSTRACT

Sepsis is characterized by multiorgan system dysfunction that occurs because of infection. It is associated with high morbidity and mortality and is in need of improved therapeutic interventions. Neutrophils play a crucial role in sepsis, releasing neutrophil extracellular traps (NETs) composed of DNA complexed with histones and toxic antimicrobial proteins that ensnare pathogens, but also damage host tissues. At presentation, patients often have a significant NET burden contributing to the multiorgan damage. Therefore, interventions that inhibit NET release would likely be ineffective at preventing NET-based injury. Treatments that enhance NET degradation may liberate captured bacteria and toxic NET degradation products (NDPs) and likely be of limited therapeutic benefit as well. We propose that interventions that stabilize NETs and sequester NDPs may be protective in sepsis. We showed that platelet factor 4 (PF4), a platelet-associated chemokine, binds and compacts NETs, increasing their resistance to DNase I. We now show that PF4 increases NET-mediated bacterial capture, reduces the release of NDPs, and improves outcome in murine models of sepsis. A monoclonal antibody KKO which binds to PF4-NET complexes, further enhances DNase resistance. However, the Fc portion of this antibody activates the immune response and increases thrombotic risk, negating any protective effects in sepsis. Therefore, we developed an Fc-modified KKO that does not induce these negative outcomes. Treatment with this antibody augmented the effects of PF4, decreasing NDP release and bacterial dissemination and increasing survival in murine sepsis models, supporting a novel NET-targeting approach to improve outcomes in sepsis.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunoglobulin G/therapeutic use , Sepsis/drug therapy , Animals , Antibodies, Monoclonal/chemistry , Cells, Cultured , Disease Models, Animal , Female , Heparin/immunology , Human Umbilical Vein Endothelial Cells , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/therapeutic use , Immunoglobulin G/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Platelet Factor 4/genetics , Platelet Factor 4/immunology , Sepsis/complications , Sepsis/immunology , Thrombocytopenia/chemically induced , Thrombocytopenia/complications , Thrombocytopenia/pathology , Thrombocytopenia/therapy
19.
J Autoimmun ; 107: 102355, 2020 02.
Article in English | MEDLINE | ID: mdl-31732191

ABSTRACT

Systemic lupus erythematosus (SLE) is associated with a high risk of venous and arterial thrombosis, not necessarily associated with prothrombotic antiphospholipid antibodies (Abs). Alternatively, thrombosis may be due to an increased titer of anti-dsDNA Abs that presumably promote thrombosis via direct platelet activation. Here, we investigated effects of purified anti-dsDNA Abs from the blood of SLE patients, alone or in a complex with dsDNA, on isolated normal human platelets. We showed that anti-dsDNA Abs and anti-dsDNA Ab/dsDNA complexes induced strong platelet activation assessed by enhanced P-selectin expression and dramatic morphological and ultrastructural changes. Electron microscopy revealed a significantly higher percentage of platelets that lost their discoid shape, formed multiple filopodia and had a shrunken body when treated with anti-dsDNA Abs or anti-dsDNA Ab/dsDNA complexes compared with control samples. In addition, these platelets activated with anti-dsDNA Ab/dsDNA complexes typically contained a reduced number of secretory α-granules that grouped in the middle and often merged into a solid electron dense area. Many activated platelets released plasma membrane-derived microvesicles and/or fell apart into subcellular cytoplasmic fragments. Confocal microscopy revealed that platelets treated with anti-dsDNA Ab/dsDNA complex had a heterogeneous distribution of septin2 compared with the homogeneous distribution in control platelets. Structural perturbations were concomitant with mitochondrial depolarization and a decreased content of platelet ATP, indicating energetic exhaustion. Most of the biochemical and morphological changes in platelets induced by anti-dsDNA Abs and anti-dsDNA Ab/dsDNA complexes were prevented by pre-treatment with a monoclonal mAb against FcγRIIA. The aggregate of data indicates that anti-dsDNA Abs alone or in a complex with dsDNA strongly affect platelets via the FcγRIIA receptor. The immune activation of platelets with antinuclear Abs may comprise a prothrombotic mechanism underlying a high risk of thrombotic complications in patients with SLE.


Subject(s)
Antibodies, Antinuclear/immunology , Blood Platelets/immunology , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/immunology , Platelet Activation/immunology , Thrombosis/etiology , Antibodies, Antinuclear/blood , Autoantigens/immunology , Autoimmunity , Blood Platelets/metabolism , DNA/immunology , Humans , Lupus Erythematosus, Systemic/metabolism , Thrombosis/diagnosis , Thrombosis/metabolism
20.
Cell Signal ; 66: 109488, 2020 02.
Article in English | MEDLINE | ID: mdl-31785332

ABSTRACT

Despite improvements in cancer early detection and treatment, metastatic breast cancer remains deadly. Current therapeutic approaches have very limited efficacy in patients with triple negative breast cancer. Among the many mechanisms associated that contribute to cancer progression, signaling through the CXCL12-CXCR4 is an essential step in cancer cell migration. We previously demonstrated the formation of CXCL12-CXCL4 heterodimers (Carlson et al., 2013). Here, we investigated whether CXCL12-CXCL4 heterodimers alter tumor cell migration. CXCL12 alone dose-dependently promoted the MDA-MB 231 cell migration (p < .05), which could be prevented by blocking the CXCR4 receptor. The addition of CXCL4 inhibited the CXCL12-induced cell migration (p < .05). Using NMR spectroscopy, we identified the CXCL4-CXCL12 binding interface. Moreover, we generated a CXCL4-derived peptide homolog of the binding interface that mimicked the activity of native CXCL4 protein. These results confirm the formation of CXCL12-CXCL4 heterodimers and their inhibitory effects on the migration of breast tumors cells. These findings suggest that specific peptides mimicking heterodimerization of CXCL12 might prevent breast cancer cell migration.


Subject(s)
Adenocarcinoma/metabolism , Chemokine CXCL12/metabolism , Platelet Factor 4/metabolism , Triple Negative Breast Neoplasms/metabolism , Adenocarcinoma/pathology , Cell Line, Tumor , Cell Movement , Female , Humans , Protein Multimerization , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...