Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 18, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36611093

ABSTRACT

Aerobic exercise is well known to promote neuroplasticity and hippocampal memory. In the developing brain, early-life exercise (ELE) can lead to persistent improvements in hippocampal function, yet molecular mechanisms underlying this phenomenon have not been fully explored. In this study, transgenic mice harboring the "NuTRAP" (Nuclear tagging and Translating Ribosome Affinity Purification) cassette in Emx1 expressing neurons ("Emx1-NuTRAP" mice) undergo ELE during adolescence. We then simultaneously isolate and sequence translating mRNA and nuclear chromatin from single hippocampal homogenates containing Emx1-expressing neurons. This approach allowed us to couple translatomic with epigenomic sequencing data to evaluate the influence of histone modifications H4K8ac and H3K27me3 on translating mRNA after ELE. A subset of ELE mice underwent a hippocampal learning task to determine the gene expression and epigenetic underpinnings of ELE's contribution to improved hippocampal memory performance. From this experiment, we discover gene expression - histone modification relationships that may play a critical role in facilitated memory after ELE. Our data reveal candidate gene-histone modification interactions and implicate gene regulatory pathways involved in ELE's impact on hippocampal memory.


Subject(s)
Histones , Memory Consolidation , Mice , Animals , Histones/genetics , Histones/metabolism , Epigenome , Hippocampus/metabolism , Mice, Transgenic , RNA, Messenger/metabolism , Gene Expression
2.
Curr Protoc ; 2(10): e570, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36287035

ABSTRACT

Epigenetic regulation of transcription is gaining increasing importance in the study of neurobiology. The advent of sequencing technology has enabled the study of this regulation across the entire genome and transcriptome. However, modern methods that allow the correlation of transcriptomic data with epigenomic regulation have had several key limitations, including use of separate tissue sources and detection of low-expression genes. This article describes a method combining isolation of nuclei tagged in specific cell types (INTACT) with translating ribosome affinity purification (TRAP) in the same cell homogenate, referred to as Simultaneous INTACT and TRAP (SIT). We used this technical approach to directly couple transcriptomic sequencing with epigenomic data in neurons derived from the mouse hippocampus. We demonstrate this method with an Emx1-NuTRAP transgenic mouse model. Here, we present protocols for SIT and for the generation and validation of the Emx1-NuTRAP mouse model that we used to demonstrate SIT. These methods enable cell type-specific comparison of translating mRNA and chromatin data from the same set of cells. Using SIT and the Emx1-NuTRAP transgenic mouse model, researchers can compare epigenomic data to transcriptomic data in the same set of hippocampal excitatory neurons. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Emx1-NuTRAP transgenic mouse line for labeling excitatory neurons in the hippocampus Basic Protocol 2: SIT: Simultaneous Isolation of nuclei tagged in specific cell types (INTACT) and Translating ribosome affinity purification (TRAP).


Subject(s)
Epigenesis, Genetic , Transcriptome , Mice , Animals , Ribosomes/metabolism , Mice, Transgenic , RNA, Messenger/metabolism , Chromatin/metabolism
3.
Bio Protoc ; 11(13): e4071, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34327268

ABSTRACT

Rodent cages equipped with access to a voluntary running wheel are commonly used to study the effects of aerobic physical activity on physiology and behavior. Notable discoveries in exercise neurobiology, including the key role of brain-derived neurotrophic factor (BDNF) in neural plasticity and cognition, have been made using rodents housed with voluntary running wheels. A major advantage of using home-cage running wheels over treadmills is the elimination of stress potentially associated with forced running. In addition, voluntary wheel running may simulate a more natural running pattern in laboratory mice. Singly housing mice with voluntary running wheels is traditionally employed to obtain exact quantitation of the distance ran; however, social isolation stress is often ignored to obtain precise running distances. Moreover, voluntary exercise studies in adolescent mice must consider the neurodevelopmental implications of isolation stress. In this protocol, we wean 21-day-old mouse pups directly into running wheel-equipped cages and pair-house them to reduce the impact of social isolation and other developmentally specific factors that could adversely affect their behavior or development. Individual running distances are obtained from each mouse in the cage using a radio-frequency identification (RFID) ear tag and a hidden antenna placed directly under the running wheel. We have demonstrated that voluntary running during a specific juvenile-adolescent developmental period can improve hippocampal memory when tested during adolescence ( Ivy et al., 2020 ). Individual exercise tracking of group-housed mice can enable future studies to precisely correlate the amount of exercise with readouts such as cell-specific gene expression, epigenetic mechanisms, serum biomarkers, and behavior, in an intra-individual manner. Graphic abstract: Figure 1.Illustration of the dual RFID and Vital View system for individual mouse running in a pair-housed cage.

4.
Sci Rep ; 9(1): 7847, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127176

ABSTRACT

It is well established that chronic heavy alcohol drinking (CHD) results in significant organ damage, increased susceptibility to infections, and poor outcomes following injury. In contrast, chronic moderate drinking (CMD) has been associated with improved cardiovascular health and immunity. These differential outcomes have been linked to alterations in both innate and adaptive branches of the immune system; however, the mechanisms remain poorly understood. To address this question, we determined the impact of chronic drinking on the transcriptional and functional responses of peripheral blood mononuclear cells (PBMC) collected from male rhesus macaques classified as CMD or CHD after 12 months of voluntary ethanol self-administration. Our analysis suggests that chronic alcohol drinking, regardless of dose alters resting transcriptomes of PBMC, with the largest impact seen in innate immune cells. These transcriptional changes are partially explained by alterations in microRNA profiles. Additionally, chronic alcohol drinking is associated with a dose dependent heightened inflammatory profiled at resting and following LPS stimulation. Moreover, we observed a dose-dependent shift in the kinetics of transcriptional responses to LPS. These findings may explain the dichotomy in clinical and immunological outcomes observed with moderate versus heavy alcohol drinking.


Subject(s)
Alcoholism/complications , Ethanol/toxicity , Leukocytes, Mononuclear/drug effects , Severity of Illness Index , Adaptive Immunity/drug effects , Alcoholism/blood , Alcoholism/diagnosis , Alcoholism/immunology , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Ethanol/administration & dosage , Humans , Immunity, Innate/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/immunology , Macaca mulatta , Male , RNA-Seq , Self Administration/adverse effects , Transcriptome/drug effects , Transcriptome/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...