Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
J Anim Sci ; 85(7): 1695-701, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17400967

ABSTRACT

The experiment was designed to assess whether corn fractions or extrusion of corn can result in feed ingredients with a greater nutritional value than corn. Corn grain (8.0% CP, 0.21% P, 9.8% NDF) was processed by extrusion (82.8 degrees C, 345 kPa steam pressure for 12 s) or by dry milling to derive fractions rich in germ (13.1% CP, 1.19% P, 17.2% NDF), hulls (8.1% CP, 0.27% P, 32.6% NDF), and endosperm, namely tails (6.6% CP, 0.07% P, 3.6% NDF) and throughs (7.4% CP, 0.15% P, 4.5% NDF). Relative recovery in each fraction was 16, 20, 44, and 20%, respectively. Ileal digestibility of DM, P, and amino acids was determined using diets containing 7.0% CP from soybean meal and 5.3% CP from one of the test products. To allow for determination of standardized ingredient, ileal digestibility, basal endogenous AA losses were determined using a protein-free diet (74.6% cornstarch and 18.7% sucrose). Soybean meal ileal digestibility was determined using a diet (12.3% CP) based on soybean meal (23.3%). Eight barrows (27 +/- 2 kg) fitted with T-cannulas were fed 8 experimental diets (5-d adaptation and 2-d collection period) such that each diet was evaluated in at least 5 barrows. Relative to corn (77.9 +/- 1.2%), ileal digestibility of DM was greater for extruded corn (82.5%; P = 0.02), tails (85.9%; P < 0.01), and throughs (85.0%; P < 0.01), but it was lower for hulls (62.2%; P < 0.01) and germ (51.1%; P < 0.01). For P, corn (41.6 +/- 9.5%), throughs (47.2%), and hulls (57.3%) had similar ileal digestibility, but germ (7.9%) had lower ileal digestibility (P = 0.02) than corn; tails (27.6%) and extruded corn (23.5%) were not different from corn or germ but were lower than throughs and hulls. For total AA, corn (84.7 +/- 2.4%), throughs (84.3%), and hulls (85.8%) had similar ileal digestibility, but germ (76.6%) had lower ileal digestibility (P < 0.01) than corn; tails (82.0%) and extruded corn (81.7%) were intermediate. In conclusion, germ and hulls have a low ileal DM digestibility; germ also has low AA and P digestibility. Extrusion improved the ileal DM digestibility of corn. To maximize the ileal digestibility, removal of germ and hull from corn or extrusion of corn may thus be of interest.


Subject(s)
Dietary Proteins/analysis , Digestion , Food Handling/methods , Swine/metabolism , Zea mays , Amino Acids/analysis , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Male , Nutritional Requirements , Nutritive Value , Particle Size , Swine/growth & development , Zea mays/chemistry
2.
Bioresour Technol ; 97(2): 348-54, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16171692

ABSTRACT

In corn wet milling, dry matter can be separated from liquids in process streams with centrifuges or vacuum belt filtration (VBF). Because separations usually are not complete, dry matter can be lost in the liquid streams (overflow from the gluten thickener centrifuge and filtrate from VBF). This represents a loss of nutrients, especially protein, to low valued coproducts and reduces quality of water for recycling within the process. The objective was to compare microfiltration of light and heavy gluten process streams to conventional separation methods. Batches of light and heavy gluten were obtained from a wet mill plant and processed by microfiltration. Samples of permeate and concentrate from microfiltration were analyzed and compared to corresponding streams from wet milling. Microfiltration of light gluten resulted in concentrate and permeate streams similar in composition to conventionally processed light gluten using a centrifuge, suggesting that microfiltration is as effective as centrifugation in partitioning solids and water in light gluten. Dewatering of heavy gluten found that conventional VBF caused dry matter concentrations in gluten cake to be higher than concentrate from microfiltration. Permeate from microfiltration of heavy gluten had higher concentrations of ash and lower soluble nitrogen than filtrate from VBF. Microfiltration was able to remove more ash from concentrate, which may improve the value of wet milling coproducts. These data demonstrated microfiltration has potential for separation of light and heavy gluten streams, but more data are needed on effectiveness and practicality.


Subject(s)
Filtration/methods , Glutens/chemistry , Zea mays/chemistry , Centrifugation , Glutens/isolation & purification , Water
3.
Bioresour Technol ; 94(3): 293-8, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15182836

ABSTRACT

Increase in the demand for ethanol has resulted in growth in the dry grind (DG) ethanol industry. In DG processing, the whole corn kernel is fermented, resulting in two main coproducts, ethanol and distillers dried grains with solubles (DDGS). Marketing of DDGS is critical to the economic stability of DG plants. The composition of DDGS can vary considerably; this reduces market value. Factors that cause variation in composition need to be evaluated. The objective was to determine the relationship between composition of corn and composition of DDGS. Samples of corn and DDGS were obtained from a DG ethanol plant and analyzed for protein, fat, starch and other nutrients. Concentrations of protein, fiber and starch were similar to published data for corn but were higher for DDGS. Coefficients of variation for protein fat and fiber concentrations were similar for corn and DDGS. There were no significant correlations between concentrations of components in corn and those in DDGS. Variation in the composition of DDGS was not related to variation in corn composition and probably was due to variation in processing streams or processing techniques. This implies that reducing the variation in composition of DDG will require modification of processing strategies.


Subject(s)
Fats/analysis , Proteins/analysis , Starch/analysis , Zea mays/chemistry , Biotechnology/methods , Minnesota , Rain , Soil/analysis , Temperature
4.
Bioresour Technol ; 90(1): 49-54, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12835056

ABSTRACT

The primary commodity of corn wet milling is starch, but two coproducts (corn gluten feed, CGF and corn gluten meal, CGM) also are produced. CGM and CGF are marketed as animal foodstuffs and are important economically; however, variation in composition reduces quality. There are few data on the effect of composition of the parent process streams, light steep water (LSW) and light gluten (LG), respectively, on composition of CGF and CGM. The objective was to characterize LG and LSW. Samples of LG and LSW were collected: (1) hourly for one day, (2) every 3 h for 3 days, and (3) daily for 3 weeks. Dry matter, N and ash were determined. Variation in composition of LG and LSW was greatest during longer periods of time (days and weeks) rather than shorter (hourly or every 3 h). There was significant variation in DM (solids) content, which directly affected the concentration of other components. Variation in N (protein) of LG and LSW accounted for much of the variation in CGF and CG. Processes that modify processing and reduce variation could increase the quality of CGF and CGM.


Subject(s)
Flowers/chemistry , Glutens/analysis , Glutens/chemistry , Plant Proteins/analysis , Plant Proteins/chemistry , Water/chemistry , Zea mays/chemistry , Agriculture/methods , Food Handling/methods
5.
Bioresour Technol ; 89(2): 163-7, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12699935

ABSTRACT

Corn gluten meal (CGM) is a major coproduct of corn wet milling; it has value because of high protein. However, variation in composition and high P content reduce market value. Data that characterize gluten streams would be helpful in identifying key processing steps that could be modified to improve the quality of CGM and increase processing efficiency. Few data are published in the literature on the detailed composition of gluten processing streams. The objective was to characterize the gluten process streams in a corn wet milling plant. Samples were obtained from one plant over a six month period and analyzed for dry matter (DM), total N (protein), ash and elements. DM and macroelement content of the streams were increased significantly during processing. Ash, priority pollutant elements and microelement concentrations were low and of little concern. About 38% of the N (protein) in light gluten was not recovered in the CGM; most of this was lost at the gluten thickener step into the gluten thickener overflow. Much of the P also was removed at this step. Modification of the gluten thickener overflow to increase N and reduce P could make CGM a more valuable coproduct and improve processing efficiency.


Subject(s)
Glutens/chemistry , Zea mays , Conservation of Natural Resources , Glutens/metabolism , Nitrogen/analysis , Proteins/analysis , Refuse Disposal
6.
Poult Sci ; 79(9): 1356-63, 2000 Sep.
Article in English | MEDLINE | ID: mdl-11020085

ABSTRACT

The convenience and appeal of battered or breaded products have resulted in a sales increase of 100% since 1980. Because of the rapid growth of the Asian-American population and increasing consumption of rice and rice products, rice flour is a logical alternative for wheat flour in traditional batter formulation. The effects of ingredients used in rice flour-based batters on adhesion characteristic for deep-fat fried chicken drumsticks were studied by laser scanning confocal microscopy (LSCM) and texture analysis. Raw chicken drumsticks were predusted with egg albumin powder before dipping into batters prepared from combinations of rice flour, yellow corn flour, oxidized cornstarch, methylcellulose, or xanthan gum. The drumsticks were fried at 175+/-5 C until the internal temperature reached at least 71 C. For LSCM, samples were fixed overnight and were sectioned by vibratome (200 microm) before viewing. Batter adhesion was determined using an attachment specifically designed for chicken drumsticks. Microstructural analysis showed that batter formulated with a 50:50 mixture of rice and corn flours adhered better to drumsticks than batter with other rice flour ratios. Xanthan gum (0.2%) or methylcellulose (0.3%) alone had poor adhesion to chicken skin. However, when combined with other ingredients, xanthan gum increased the amount of batter pick-up before frying by increasing viscosity. Egg albumin significantly facilitated batter adhesion. The results from texture analysis supported the microstructural studies. As rice flour ratio increased from 50 to 70%, the binding force decreased. Rice flour showed potential as an alternative to wheat flour for batter formulas when the appropriate levels of oxidized starch, xanthan gum, and methylcellulose were included in the formulation.


Subject(s)
Chickens , Flour , Food Technology , Microscopy, Confocal , Oryza , Poultry Products , Albumins , Animals , Chemical Phenomena , Chemistry, Physical , Colloids , Cooking , Methylcellulose , Oxidation-Reduction , Starch
7.
Fortschr Med ; 100(10): 393-5, 1982 Mar 11.
Article in German | MEDLINE | ID: mdl-7068074

ABSTRACT

As has become evident from an interview of 161 patients affected by vaginal mycosis, the subjective experience of the disease must be seen in relation to the sociopsychological problems involved. Assumed negative reactions to the disease in the patient's social environment as well as fear and uncertainty regarding the aetiology of the disease make it hard for the patient to accept her disease, which would surely favour a steadfast therapeutic behaviour. For the gynaecologist the finding of a "vaginal mycosis" represents an unproblematic affection since it is easily controllable with antimycotics. The result of this different approach to the disease by doctor and patient is non-compliance of the vaginal mycosis patient: the patient goes to see her doctor soon after the appearance of complaints, but tends to terminate treatment prematurely when the subjective complaints subside, in order to avoid a further confrontation with the disease. An adequate, short-term treatment of vaginal mycosis, the course of which is supervised both clinically and microbiologically, thus appears to be the right way of solving the problem of non-compliance.


Subject(s)
Mycoses/drug therapy , Vaginal Diseases/drug therapy , Administration, Topical , Antifungal Agents/administration & dosage , Drug Administration Schedule , Female , Humans , Mycoses/psychology , Patient Compliance , Tablets , Time Factors , Vaginal Diseases/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...