Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 24(70): 18801-18808, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30312518

ABSTRACT

The hydrogenation reactions of diphenylcarbene 1, fluorenylidene 2, and dibenzocycloheptadienylidene 3 were investigated in solid H2 and D2 matrices and in H2 - and D2 -doped argon matrices at cryogenic temperatures. The reactivity of the carbenes towards H2 increases in the order 1<3<2. Whereas 1 is stable in solid H2 , 2 and 3 react fast under the same conditions via quantum chemical tunneling. In D2 both 1 and 3 are stable, whereas 2 slowly reacts. The different reactivity of the three carbenes is rationalized in terms of differing carbene stabilization energies.

2.
Chemistry ; 24(68): 18043-18051, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30230615

ABSTRACT

The reactions of the three triplet ground state arylcarbenes diphenylcarbene 1, fluorenylidene 2, and dibenzocycloheptadienylidene 3 with the Lewis acids H2 O, ICF3 , and BF3 were studied under the conditions of matrix isolation. H2 O was selected as typical hydrogen bond donor, ICF3 as halogen bond donor, and BF3 as strong Lewis acid. H2 O forms hydrogen-bonded complexes of the singlet carbenes with 1 and 2, but not with 3. This is rationalized by the larger singlet-triplet gap of 3, which does not allow to stabilize the singlet state below the triplet state by hydrogen bonding. With ICF3 , both 1 and 3 form halogen-bonded complexes of the singlet states of the carbenes. This indicates that halogen bonding stabilizes singlet carbenes more than hydrogen bonding. Carbene 2 reacts differently from 1 and 3 by forming an iodonium ylide, thus avoiding antiaromatic destabilization of the fluorenyl unit. With BF3 , all three carbenes form zwitterionic Lewis acid/base complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...