Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 259: 116374, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754195

ABSTRACT

Laboratory-based nucleic acid amplification tests (NAATs) are highly sensitive and specific, but they require the transportation of samples to centralized testing facilities and have long turnaround times. During the Coronavirus Disease 2019 (COVID-19) pandemic, substantial advancement has been achieved with the development of paper-based point-of-care (POC) NAATs, offering features such as low cost, being easy to use, and providing rapid sample-to-answer times. Although most of the POC NAATs innovations are towards clinical settings, we have developed a portable, paper-based loop-mediated isothermal amplification (LAMP) testing platform for on-farm applications, capable of detecting Bacteroidales as a fecal contamination biomarker. Our integrated platform includes a drop generator, a heating and imaging unit, and paper-based biosensors, providing sensitive results (limit of detection 3 copies of Bacteroidales per cm2) within an hour of sample collection. We evaluated this integrated platform on a commercial lettuce farm with a concordance of 100% when compared to lab-based tests. Our integrated paper-based LAMP testing platform holds great promise as a reliable and convenient tool for on-site NAATs. We expect that this innovation will encourage the fresh produce industry to adopt NAATs as a complementary tool for decision-making in growing and harvesting. We also hope that our work can stimulate further research in the development of on-farm diagnostic tools for other agricultural applications, leading to improved food safety and technology innovation.


Subject(s)
Biosensing Techniques , COVID-19 , Feces , Nucleic Acid Amplification Techniques , Paper , SARS-CoV-2 , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Feces/microbiology , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Humans , Lactuca/microbiology , Farms , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Equipment Design
2.
Cell Transplant ; 32: 9636897231165117, 2023.
Article in English | MEDLINE | ID: mdl-37039377

ABSTRACT

Retinal cells are irreparably damaged by diseases such as age-related macular degeneration (AMD). A promising method to restore partial or whole vision is through cell-based transplantation to the damaged location. However, cell transplantation using conventional vitreous surgery is an invasive procedure that may induce infections and has a high failure rate of cell engraftment. In this study, we describe the fabrication of a biodegradable composite nanosheet used as a substrate to support retinal pigment epithelial (RPE-J) cells, which can be grafted to the sub-retinal space using a minimally invasive approach. The nanosheet was fabricated using polycaprolactone (PCL) and collagen in 80:20 weight ratio, and had size of 200 µm in diameter and 300 nm in thickness. These PCL/collagen nanosheets showed excellent biocompatibility and mechanical strength in vitro. Using a custom designed 27-gauge glass needle, we successfully transplanted an RPE-J cell loaded nanosheet into the sub-retinal space of a rat model with damaged photoreceptors. The cell loaded nanosheet did not trigger immunological reaction within 2 weeks of implantation and restored the retinal environment. Thus, this composite PCL/collagen nanosheet holds great promise for organized cell transplantation, and the treatment of retinal diseases.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Rats , Animals , Retina , Collagen , Macular Degeneration/surgery , Cell Transplantation
3.
Micromachines (Basel) ; 12(3)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800233

ABSTRACT

This study provides design of a low-cost and open source add-on device that enhances the functionality of the popular EVOM® instrument for transepithelial/endothelial electrical resistance (TEER) measurement. The original EVOM® instrument is designed for measuring TEER in transwell samples manually using a pair of Ag/AgCl electrodes. The inconsistency in electrode placement, temperature variation, and a typically large (12-24 h) time interval between measurements result in large data variabilities. Thus, to solve the current limitation of the EVOM® instrument, we built an add-on device using a custom designed electronic board and a 3D printed electrode holder that allowed automated TEER measurements in multiple transwell samples. To demonstrate the functionality of the device prototype, we monitored TEER in 4 transwell samples containing retinal cells (ARPE-19) for 67 h. Furthermore, by monitoring temperature of the cell culture medium, we were able to detect fluctuations in TEER due to temperature change after the medium change process, and were able to correct the data offset. Although we demonstrated the use of our add-on device on EVOM® instrument only, the concept (multiplexing using digitally controlled relays) and hardware (custom data logger) presented here can be applied to more advanced TEER instruments to improve the performance of those devices.

4.
Micromachines (Basel) ; 11(4)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326233

ABSTRACT

Self-sustainable release of brain-derived neurotrophic factor (BDNF) to the retina using minimally invasive cell-encapsulation devices is a promising approach to treat retinal degenerative diseases (RDD). Herein, we describe such a self-sustainable drug delivery device with human retinal pigment epithelial (ARPE-19) cells (cultured on collagen coated polystyrene (PS) sheets) enclosed inside a 3D printed semi-porous capsule. The capsule was 3D printed with two photo curable polymers: triethylene glycol dimethacrylate (TEGDM) and polyethylene glycol dimethylacrylate (PEGDM). The capsule's semi-porous membrane (PEGDM) could serve three functions: protecting the cells from body's immune system by limiting diffusion (5.97 ± 0.11%) of large molecules like immunoglobin G (IgG)(150 kDa); helping the cells to survive inside the capsule by allowing diffusion (43.20 ± 2.16%) of small molecules (40 kDa) like oxygen and necessary nutrients; and helping in the treatment of RDD by allowing diffusion of cell-secreted BDNF to the outside environment. In vitro results showed a continuous BDNF secretion from the device for at least 16 days, demonstrating future potential of the cell-encapsulation device for the treatment of RDD in a minimally invasive and self-sustainable way through a periocular transplant.

5.
Micromachines (Basel) ; 11(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936821

ABSTRACT

Microfluidic devices are gaining increasing popularity due to their wide applications in various research areas. Herein, we propose a two-layer multi-channel microfluidic device allowing for direct-contact cell-vessel co-culture. Using the device, we built a co-culture model of the outer blood-retina barrier (oBRB), mimicking the in vivo retinal pigment epithelial cells-Bruch membrane-fenestrated choroids. To demonstrate the versatility of the design, we further modified the device by inserting platinum electrodes for trans-epithelial electrical resistance (TEER) measurement, demonstrating the feasibility of on-chip assessment of the epithelial barrier integrity. Our proposed design allows for direct-contact co-culture of cell-cell or cell-vessel, modifiable for real-time evaluation of the state of the epithelial monolayers.

SELECTION OF CITATIONS
SEARCH DETAIL
...