Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 171: 112775, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34375747

ABSTRACT

The present study examines historical perspectives of the macrobenthic community in response to different phases of anthropogenic perturbations in Kakinada Bay, a tropical embayment on the east coast of India. Multivariate analysis of the snapshot data (1958-2017) revealed considerable changes in the Bay environment following a breakwater construction across the Bay mouth in 1997. Subsequently, port expansion activities, industrialization, urbanization, and geomorphic alterations in the Godavari delta brought deterrent changes in the Bay. The fluctuations over the years in hydrographical and sediment characteristics increased environmental heterogeneity and caused significant spatio-temporal shifts in the macrobenthic community between 1995-1996 and 2016-2017. The observed variabilities were suggestive of anthropogenic perturbations of the system with future repercussions on Bay ecosystem functioning. Overall, this study provides evidence on the long-term impact of anthropogenic activities on coastal marine communities and stresses the importance of macrobenthos as bioindicators of such changes in tropical systems.


Subject(s)
Bays , Ecosystem , Environmental Monitoring , Geologic Sediments , India
2.
Environ Monit Assess ; 189(6): 258, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28478543

ABSTRACT

Tintinnid species distribution and hydrography were studied in the coastal waters of Digha during winter (November 2015) and summer (March 2016) seasons. Surface water samples were collected from 11 different stations from 0 to 10 km offshore with the help of a mechanized trawler. Parameters like tintinnid species enumeration, zooplankton biomass, phytoplankton concentration (total chlorophyll) and abundance, sea surface temperature (SST), pH, transparency, salinity, dissolved oxygen (DO), total phosphate, silicate and nitrate were analysed. A total of 20 different tintinnid species (16 agglomerated +4 non-agglomerated) belonging to 6 genera were recorded from the study area with seasonal variation in tintinnid diversity, i.e. higher in summer (total 2745 individual/l) compared to winter (total 1191 individual/l). Tintinnopsis was the most dominant genus during both the seasons, i.e. 2100 individual/l in summer and 727 individual/l in winter, contributing about 76 and 61% population for the respective seasons. The correlation between species and water quality parameters showed that Tintinnopsis sp. abundance was significantly regulated by nitrate concentration, salinity, dissolved oxygen, water transparency and pH. However, the mentioned hydrological parameters were not the only factors regulating the tintinnid abundance. Tintinnid abundance was also found to be positively related with transparency (r = 0.732) and salinity (r = 0.524) and moderately related with dissolved oxygen (r = 0.488) whereas strong negative relation (at p ≤ 0.05) was established between tintinnid abundance with nitrate (r = -0.681) and pH (r = -0.561). Bray-Curtis cluster analysis of tintinnid species showed more than 60% similarity. Shannon's diversity index (H'), Simpson's evenness index (D) and Margalef's species richness index were found to be higher in summer, i.e. 1.61, 0.729 and 1.612, compared to the winter season, i.e. 1.139, 0.597 and 1.268. k-dominance curve showed maximum abundance of Tintinnopsis baltica in winter and Tintinnopsis gracilis in summer. Principal component analysis (PCA) was analysed to find out the environmental variables affecting different tintinnid species diversity. A significant spatiotemporal variation in Tintinnid population distribution was observed from two-way ANOVA. The results reflect significant seasonal (F = 840.0), spatial (F = 47.3) and interactive variation (F = 71.2) among the ciliate microzooplankton at n = 66, p ≤ 0.001. High chlorophyll content and phytoplankton population in summer indicated that tintinnid diversity in the season was positively influenced by producer community in coastal waters of Digha.


Subject(s)
Biodiversity , Environmental Monitoring , Zooplankton/classification , Animals , Bangladesh , Bays , Biomass , Chlorophyll/analysis , Ciliophora/classification , Ciliophora/growth & development , Nitrates/analysis , Phytoplankton/classification , Phytoplankton/growth & development , Salinity , Seasons , Temperature , Zooplankton/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...