Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
J Microbiol Biotechnol ; 27(4): 685-693, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28138121

ABSTRACT

Candidiasis involving the biofilms of Candida albicans is a threat to immunocompromised patients. Candida biofilms are intrinsically resistant to the antifungal drugs and hence novel treatment strategies are desired. The study intended to evaluate the anti-Candida activity of allyl isothiocyanate (AITC) alone and with fluconazole (FLC), particularly against the biofilms. Results revealed the concentration-dependent activity of AITC against the planktonic growth and virulence factors of C. albicans. Significant (p <0.05) inhibition of the biofilms was evident at < or =1 mg/ml concentrations of AITC. Notably, a combination of 0.004 mg/ml of FLC and 0.125 mg/ml of AITC prevented the biofilm formation. Similarly, the preformed biofilms were significantly (p <0.05) inhibited by the AITC-FLC combination. The fractional inhibitory concentration indices ranging from 0.132 to 0.312 indicated the synergistic activity of AITC and FLC against the biofilm formation and the preformed biofilms. No hemolytic activity at the biofilm inhibitory concentrations of AITC and the AITC-FLC combination suggested the absence of cytotoxic effects. The recognizable synergy between AITC and FLC offers a potential therapeutic strategy against biofilm-associated Candida infections.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Fluconazole/pharmacology , Isothiocyanates/pharmacology , Biofilms/growth & development , Candida albicans/cytology , Candidiasis/drug therapy , Candidiasis/microbiology , Drug Combinations , Drug Resistance, Fungal , Drug Resistance, Multiple, Fungal/drug effects , Drug Synergism , Erythrocytes/drug effects , Humans , Hyphae/cytology , Hyphae/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Microscopy, Electron, Scanning , Plankton/drug effects , Virulence Factors
3.
Curr Pharm Des ; 22(27): 4111-34, 2016.
Article in English | MEDLINE | ID: mdl-27262331

ABSTRACT

BACKGROUND: Candida biofilm and associated infections is a serious threat to the large population of immunocompromised patients. Biofilm growth on prosthetic devices or host tissue shows reduced sensitivity to antifungal agents and persists as a reservoir of infective cells. Options for successful treatment of biofilm associated Candida infections are restricted because most of the available antifungal drugs fail to eradicate biofilms. OBJECTIVE: Various plant actives are known to possess interesting antifungal properties. To explore and review the potential of phytochemicals as a novel strategy against Candida biofilms is the intent of present article. METHOD: Thorough literature search is performed to identify Candida biofilm inhibitors of plant origin. An account of efficacy of selected phytochemicals is presented taking into consideration their biofilm inhibitory concentrations. RESULTS: This review discusses biofilm formation by Candida species, their involvement in human infections, and associated drug resistance. It gives insight into the biofilm inhibitory potential of various phytochemicals. Based on the available reports including the work done in our laboratory, several plant extracts, essential oils and phytomolecules have been identified as excellent inhibitors of biofilms of C. albicans and non-albicans Candida species (NACS). CONCLUSION: Selected phytochemicals which exhibit activities at low concentrations without displaying toxicity to host are potential therapeutic agents against biofilm associated Candida infections. In vivo testing in animal models and clinical trials in humans are required to be taken up seriously to propose few of the phytochemicals as candidate drug molecules.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida/drug effects , Phytochemicals/pharmacology , Animals , Antifungal Agents/chemistry , Candida/growth & development , Humans , Microbial Sensitivity Tests , Phytochemicals/chemistry
4.
J Gen Appl Microbiol ; 60(5): 163-8, 2014.
Article in English | MEDLINE | ID: mdl-25420420

ABSTRACT

Infections associated with the biofilms of Candida albicans are a challenge to antifungal treatment. Combinatorial therapy involving plant molecules with antifungal drugs would be an effective complementary approach against drug-resistant Candida biofilms. The aim of this study was to evaluate the efficacy of three bioactive terpenoids (carvacrol, eugenol and thymol) in combination with fluconazole against planktonic cells, biofilm development and mature biofilms of C. albicans. Activities of the selected molecules were tested using a microplate-based methodology, while their combinations with fluconazole were performed in a checkerboard format. Biofilms were quantitated by XTT-metabolic assay and confirmed by microscopic observations. Combinations of carvacrol and eugenol with fluconazole were found synergistic against planktonic growth of C. albicans, while that of thymol with fluconazole did not have any interaction. Biofilm development and mature biofilms were highly resistant to fluconazole, but susceptible to three terpenoids. Sensitization of cells by sub-inhibitory concentrations of carvacrol and eugenol resulted in prevention of biofilm formation at low fluconazole concentrations, i.e. 0.032 and 0.002 mg ml(-1), respectively. Addition of thymol could not potentiate activity of fluconazole against biofilm formation by C. albicans. Fractional inhibitory concentration indices (FICI) for carvacrol-fluconazole and eugenol-fluconazole combinations for biofilm formation were 0.311 and 0.25, respectively. The FICI value of 1.003 indicated a status of indifference for the combination of thymol and fluconazole against biofilm formation. Eugenol and thymol combinations with fluconazole did not have useful interaction against mature biofilms of C. albicans, but the presence of 0.5 mg ml(-1) of carvacrol caused inhibition of mature biofilms at a significantly low concentration (i.e. 0.032 mg ml(-1)) of fluconazole. The study indicated that carvacrol and eugenol combinations with fluconazole would be a potential alternative strategy for prevention and control of biofilm-associated C. albicans infections.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Fluconazole/pharmacology , Terpenes/pharmacology , Candida albicans/physiology , Drug Synergism , Microbial Viability/drug effects , Plants/chemistry , Staining and Labeling/methods , Terpenes/isolation & purification , Tetrazolium Salts/metabolism
5.
J Microbiol Biotechnol ; 24(9): 1216-25, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24851813

ABSTRACT

Biofilm-related infections of Candida albicans are a frequent cause of morbidity and mortality in hospitalized patients, especially those with immunocompromised status. Options of the antifungal drugs available for successful treatment of drug-resistant biofilms are very few, and as such, new strategies need to be explored against them. The aim of this study was to evaluate the efficacy of phenylpropanoids of plant origin against planktonic cells, important virulence factors, and biofilm forms of C. albicans. Standard susceptibility testing protocol was used to evaluate the activities of 13 phenylpropanoids against planktonic growth. Their effects on adhesion and yeast-to-hyphae morphogenesis were studied in microplate-based methodologies. An in vitro biofilm model analyzed the phenylpropanoid-mediated prevention of biofilm development and mature biofilms using XTT-metabolic assay, crystal violet assay, and light microscopy. Six molecules exhibited fungistatic activity at ≤0.5 mg/ml, of which four were fungicidal at low concentrations. Seven phenylpropanoids inhibited yeast-to-hyphae transition at low concentrations (0.031-0.5 mg/ml), whereas adhesion to the solid substrate was prevented in the range of 0.5-2 mg/ml. Treatment with ≤0.5 mg/ml concentrations of at least six small molecules resulted in significant (p < 0.05) inhibition of biofilm formation by C. albicans. Mature biofilms that are highly resistant to antifungal drugs were susceptible to low concentrations of 4 of the 13 molecules. This study revealed phenylpropanoids of plant origin as promising candidates to devise preventive strategies against drug-resistant biofilms of C. albicans.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Phenols/pharmacology , Phenylpropionates/pharmacology , Antifungal Agents/chemistry , Candida albicans/growth & development , Drug Resistance, Fungal , Hyphae/drug effects , Hyphae/growth & development , Phenols/chemistry , Phenylpropionates/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
6.
Braz. j. infect. dis ; 17(4): 395-400, July-Aug. 2013. ilus, tab
Article in English | LILACS | ID: lil-683124

ABSTRACT

Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p < 0.05) in presence of 250 µg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole.


Subject(s)
Humans , Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Chloroquine/pharmacology , Amphotericin B/pharmacology , Azoles/pharmacology , Biofilms/growth & development , Candida albicans/physiology , Candida albicans/ultrastructure , Drug Synergism , Echinocandins/pharmacology , Microbial Sensitivity Tests , Microscopy, Electron, Scanning
7.
Braz J Infect Dis ; 17(4): 395-400, 2013.
Article in English | MEDLINE | ID: mdl-23602464

ABSTRACT

Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p<0.05) in presence of 250µg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Chloroquine/pharmacology , Amphotericin B/pharmacology , Azoles/pharmacology , Biofilms/growth & development , Candida albicans/physiology , Candida albicans/ultrastructure , Caspofungin , Drug Synergism , Echinocandins/pharmacology , Humans , Lipopeptides , Microbial Sensitivity Tests , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...