Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 300: 118923, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35104559

ABSTRACT

Arsenic (As) and cadmium (Cd), two major carcinogenic heavy metals, enters into human food chain by the consumption of rice or rice-based food products. Both As and Cd disturb plant-nutrient homeostasis and hence, reduces plant growth and crop productivity. In the present study, As/Cd modulated responses were studied in non-basmati (IR-64) and basmati (PB-1) rice varieties, at physiological, biochemical and transcriptional levels. At the seedling stage, PB-1 was found more sensitive than IR-64, in terms of root biomass; however, their shoot phenotype was comparable under As and Cd stress conditions. The ionomic data revealed significant nutrient deficiencies in As/Cd treated-roots. The principal component analysis identified NH4+ as As-associated key macronutrient; while, NH4+/NO3- and K+ was majorly associated with Cd mediated response, in both IR-64 and PB-1. Using a panel of 21 transporter gene expression, the extent of nutritional deficiency was ranked in the order of PB-1(As)

Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Cadmium/analysis , Gene Expression , Nutrients/analysis , Oryza/metabolism , Plant Roots/metabolism , Soil Pollutants/analysis
2.
Chemosphere ; 269: 129327, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33385674

ABSTRACT

The extensive hydrolysis of tetravalent actinides leads to polynuclear formations through oxygen bridging facilitating the formation of colloids as end products. The pH, ionic strength has phenomenal effects on Thorium colloids formation. The quantitative estimation of colloids facilitates the fraction of soluble fraction into ionic, polymeric and colloidal forms of thorium. The colloids accountability and precipitate characterization explains the discrepancies in estimated solubility limits. The supernatants of long equilibrated (∼3 years) saturated thorium solution under various pH (5- 11) and ionic strengths (0-3 M NaClO4) were analysed by Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Ion Chromatography (IC) to determine total and ionic thorium respectively. Laser Induced Breakdown Detection (LIBD) was employed to determine the colloid size and concentrations. The precipitates were characterized by calorimetry and XRD to determine the solubility limiting phase. The results of pH, IC, ICP-MS, and LIBD measurements on the aged thorium samples are discussed with regard to the mechanism of the formation of thorium colloids. The results revealed the formation of colloids having particle size (10-40 nm) at concentrations (109-1011 particles/mL). The colloids accountancy resulted in estimated solubility products to 2-4 orders lower than their inclusion as soluble thorium. The soluble thorium was fractionated quantitatively into ionic, polymeric and colloidal forms of thorium. The precipitates formed are found to be semi amorphous.


Subject(s)
Colloids , Thorium , Chemical Fractionation , Colloids/analysis , Particle Size , Solubility , Thorium/analysis
3.
J Environ Sci (China) ; 100: 181-192, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33279031

ABSTRACT

Radionuclide migration in aquatic environment is influenced by its sorption onto colloids/mineral oxides and the presence of organic complexing anions. With a view to understand the sorption of trivalent actinides by mineral oxides in presence of organic acid, in the present study, Eu(III), malonic acid (MA) and γ-alumina are considered as representatives of trivalent actinides, low molecular weight natural occurring organic acid and aluminol sites, respectively. The influence of MA on sorption of Eu(III) by γ-alumina was elucidated by batch sorption, spectroscopic techniques and surface complexation modeling, for the first time. Attenuated Total Reflection-Fourier Transform Infrared spectroscopic studies of MA sorbed on γ-alumina revealed the presence of two inner-sphere surface complexes. Batch sorption for binary (alumina-Eu(III)) and ternary (alumina-Eu(III)-MA) systems were investigated as a function of pH, Eu(III) concentration and sequential addition of Eu(III)/MA. The pH edge for Eu(III) sorption shifts to higher pH with increasing Eu(III) concentration. In ternary systems, Eu(III) sorption is significantly enhanced at pH < 4.5. Eu(III) speciation on γ-alumina is independent of addition sequence of Eu(III)/MA. Time resolved fluorescence spectroscopy of Eu(III) sorbed on γ-alumina exhibited two surface species, XOEu2+ and (YO)2Eu+. The enhancement in I616/I592 and lifetime for ternary systems, as compared to binary system, at low pH, indicates the participation of Eu-MA complexes in the formation of surface species in ternary systems. The diffuse layer model has been employed to successfully model the experimental sorption profiles of binary and ternary systems, using code FITEQL 4.0, by considering the surface species identified by spectroscopic techniques.


Subject(s)
Aluminum Oxide , Malonates , Adsorption , Hydrogen-Ion Concentration
4.
Environ Sci Process Impacts ; 22(2): 329-339, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31909405

ABSTRACT

The present study aims at understanding the sorption mechanism of Eu(iii) by γ-alumina in the presence of picolinic acid (PA), a decontaminating agent used in the nuclear industry, through batch sorption studies, spectroscopy and surface complexation modeling. PA is weakly sorbed by γ-alumina, with the sorption increasing with pH up to 4.5 and decreasing with further increase in pH. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) measurements indicate that PA forms an inner sphere surface complex on γ-alumina. The presence of PA does not affect Eu(iii) sorption by γ-alumina at low [Eu(iii)], while it drastically reduces Eu(iii) sorption at high [Eu(iii)]. Similar Eu(iii) sorption profiles with different addition sequences of Eu(iii) and PA suggest identical Eu(iii) surface species for Eu(iii) sorption on γ-alumina in the presence of PA which has been validated by time resolved fluorescence spectroscopy (TRFS). TRFS measurements of Eu(iii) sorbed on γ-alumina in the absence (binary systems) and presence of PA (ternary systems) exhibited two components 1 & 2. The lifetime value of component 1 in ternary systems is enhanced compared to that in binary systems signifying the formation of new surface species containing Eu(iii), PA and the γ-alumina surface whereas the similarity of component 2 in both the binary and ternary systems reveals an almost identical coordination environment of Eu(iii) in the two types of system. Using the spectroscopic information obtained from TRFS, Eu(iii) sorption, at high [Eu(iii)], in ternary systems has been successfully modeled by considering Eu(iii) bridged PA surface species at both low and high affinity sites of γ-alumina. At low [Eu(iii)] both PA and Eu(iii) bridged ternary surface complexes only at high affinity sites of γ-alumina could describe the Eu(iii) sorption adequately.


Subject(s)
Aluminum Oxide , Picolinic Acids , Adsorption , Hydrogen-Ion Concentration , Picolinic Acids/chemistry
5.
Cell Calcium ; 55(3): 155-65, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24814644

ABSTRACT

Ca(2+) is an essential inorganic macronutrient, involved in regulating major physiological processes in plants. It has been well established as a second messenger and is predominantly stored in the cell wall, endoplasmic reticulum, mitochondria and vacuoles. In the cytosol, the concentration of this ion is maintained at nano-molar range. Upon requirement, Ca(2+) is released from intra-cellular as well as extracellular compartments such as organelles and cell wall. In this study, we report for the first time, a whole genome transcriptome response to short (5 D) and long (14 D) term Ca(2+) starvation and restoration in rice. Our results manifest that short and long term Ca(2+) starvation involves a very different response in gene expression with respect to both the number and function of genes involved. A larger number of genes were up- or down-regulated after 14 D (5588 genes) than after 5 D (798 genes) of Ca(2+) starvation. The functional classification of these genes indicated their connection with various metabolic pathways, ion transport, signal transduction, transcriptional regulation, and other processes related to growth and development. The results obtained here will enable to understand how changes in Ca(2+) concentration or availability are interpreted into adaptive responses in plants.


Subject(s)
Calcium Signaling , Gene Expression Profiling , Genome, Plant , Oryza/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Calcium/deficiency , Calcium/metabolism , Gene Expression Regulation, Plant , Ions/chemistry , Oryza/growth & development , Oryza/metabolism , Plant Proteins/metabolism , Regulatory Elements, Transcriptional , Seedlings/growth & development , Seedlings/metabolism
6.
Talanta ; 76(5): 1246-51, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18761185

ABSTRACT

An accurate and sensitive method based on the combination of pyrohydrolysis-ion chromatography (PH-IC) is proposed for the simultaneous separation and determination of boron as borate, chloride and fluoride in nuclear fuels such as U(3)O(8), (Pu,U)C and Pu-alloys. The determination is based on the initial pyrohydrolytic extraction of B, Cl and F from the samples as boric acid, HCl and HF, respectively, which are subsequently separated by ion chromatography (IC). The proposed method significantly improves the existing analytical methodology as it combines the determination of boron, a critical trace constituent in nuclear materials, along with F(-) and Cl(-) for chemical quality control measurements. Various experimental parameters were optimized to achieve maximum recoveries of the analytes during the pyrohydrolysis and to get better ion chromatographic (IC) separation of borate, F(-) and Cl(-) along with other anions such as CH(3)COO(-), NO(2)(-), NO(3)(-), Br(-), PO(4)(3-) and SO(4)(2-). Recoveries of more than 93% could be obtained for all the analytes in the sample (0.5-1.5 g) at 1200+/-25K and distilled with pre-heated steam at the flow rate of 0.3 mL/min. An isocratic elution with a mobile phase of 0.56 M d-mannitol in 6.5mM NaHCO(3) was used for the IC separation. The detection limits for B (as borate), F(-) and Cl(-) were 24, 13 and 25 microgL(-1), respectively. Precision of about 5% was achieved for determination of boron, Cl(-) and F(-) in the samples containing 1-5 ppm(w) of boron, and 10-25 ppm(w) of Cl and F. The method was validated with reference materials and successfully applied to the nuclear fuels. The methodology is easy to adapt on routine basis.

SELECTION OF CITATIONS
SEARCH DETAIL
...