Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 333(6045): 988-93, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21764754

ABSTRACT

The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year(-1)) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year(-1) from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year(-1) partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year(-1). Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year(-1), with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.


Subject(s)
Carbon Sequestration , Ecosystem , Trees , Atmosphere , Biomass , Carbon/analysis , Carbon Dioxide/analysis , Climate Change , Conservation of Natural Resources , Tropical Climate
2.
PLoS One ; 6(5): e19577, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21573125

ABSTRACT

Like cities, forests grow by spreading out or by growing denser. Both inventories taken steadily by a single nation and other inventories gathered recently from many nations by the United Nations confirm the asynchronous effects of changing area and of density or volume per hectare. United States forests spread little after 1953, while growing density per hectare increased national volume and thus sequestered carbon. The 2010 United Nations appraisal of global forests during the briefer span of two decades after 1990 reveals a similar pattern: A slowing decline of area with growing volume means growing density in 68 nations encompassing 72% of reported global forest land and 68% of reported global carbon mass. To summarize, the nations were placed in 5 regions named for continents. During 1990-2010 national density grew unevenly, but nevertheless grew in all regions. Growing density was responsible for substantially increasing sequestered carbon in the European and North American regions, despite smaller changes in area. Density nudged upward in the African and South American regions as area loss outstripped the loss of carbon. For the Asian region, density grew in the first decade and fell slightly in the second as forest area expanded. The different courses of area and density disqualify area as a proxy for volume and carbon. Applying forestry methods traditionally used to measure timber volumes still offers a necessary route to measuring carbon stocks. With little expansion of forest area, managing for timber growth and density offered a way to increase carbon stocks.


Subject(s)
Conservation of Natural Resources/statistics & numerical data , Data Collection , Internationality , Trees/growth & development , Carbon/metabolism , Population Dynamics , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...