Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 94(25): 13582-7, 1997 Dec 09.
Article in English | MEDLINE | ID: mdl-9391069

ABSTRACT

The primary electron donor in bacterial reaction centers is a dimer of bacteriochlorophyll a molecules, labeled L or M based on their proximity to the symmetry-related protein subunits. The electronic structure of the bacteriochlorophyll dimer was probed by introducing small systematic variations in the bacteriochlorophyll-protein interactions by a series of site-directed mutations that replaced residue Leu M160 with histidine, tyrosine, glutamic acid, glutamine, aspartic acid, asparagine, lysine, and serine. The midpoint potentials for oxidation of the dimer in the mutants showed an almost continuous increase up to approximately 60 mV compared with wild type. The spin density distribution of the unpaired electron in the cation radical state of the dimer was determined by electron-nuclear-nuclear triple resonance spectroscopy in solution. The ratio of the spin density on the L side of the dimer to the M side varied from approximately 2:1 to approximately 5:1 in the mutants compared with approximately 2:1 for wild type. The correlation between the midpoint potential and spin density distribution was described using a simple molecular orbital model, in which the major effect of the mutations is assumed to be a change in the energy of the M half of the dimer, providing estimates for the coupling and energy levels of the orbitals in the dimer. These results demonstrate that the midpoint potential can be fine-tuned by electrostatic interactions with amino acids near the dimer and show that the properties of the electronic structure of a donor or acceptor in a protein complex can be directly related to functional properties such as the oxidation-reduction midpoint potential.

2.
Biochemistry ; 36(14): 4155-62, 1997 Apr 08.
Article in English | MEDLINE | ID: mdl-9100009

ABSTRACT

The effect of solubilization of photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides with different detergents on the electronic structure of the oxidized primary donor, P.+, is investigated. Electron paramagnetic resonance spectroscopy and related multiple resonance techniques (ENDOR/Special TRIPLE) show that two distinct conformations of P.+ can be obtained, depending on the detergent properties, the detergent/RC ratio, and the temperature. The two states correspond to different positions of the long-wavelength Qy-band of the neutral state, P (lambda1 = 866 nm and lambda2 = 850 nm at room temperature) and therefore are called P866.+ and P850.+, respectively. P866.+ is found in chromatophores and in RCs solubilized with nonionic detergents and bile salts. P850.+ is induced by zwitterionic and ionic detergents with aliphatic hydrophobic chains. The TRIPLE resonance spectra reveal that both states coexist in the range lambda2 < lambda(max) < lambda1. The main property of the detergent that determines the ability to induce P850.+ is the polarity of the head group. A simple phenomenological model is presented that relates the standard Gibbs free energy difference between the two conformations to the detergent/RC ratio and the temperature. Of special interest is the observation that the widely used detergent LDAO can induce P850.+ upon freezing the RCs without cryoprotectants. The spectroscopic properties of the two states are compared and their possible roles in RC function are discussed.


Subject(s)
Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/chemistry , Bile Acids and Salts/pharmacology , Detergents/pharmacology , Dimethylamines/pharmacology , Electron Spin Resonance Spectroscopy , Electron Transport , Infrared Rays , Light , Photosynthetic Reaction Center Complex Proteins/metabolism , Protein Conformation , Quaternary Ammonium Compounds/pharmacology , Solubility , Spectrophotometry , Temperature , Thermodynamics
3.
Biochemistry ; 34(25): 8130-43, 1995 Jun 27.
Article in English | MEDLINE | ID: mdl-7794927

ABSTRACT

The electronic structure of the cation radical of the primary electron donor was investigated in genetically modified reaction centers of Rhodobacter sphaeroides. The site-directed mutations were designed to add or remove hydrogen bonds between the conjugated carbonyl groups of the primary donor, a bacteriochlorophyll dimer, and histidine residues of the protein and were introduced at the symmetry-related sites L168 His-->Phe, HF(L168), and M197 Phe-->His, FH(M197), near the 2-acetyl groups of the dimer and at sites M160 Leu-->His, LH(M160), and L131 Leu-->His, LH(L131), in the vicinity of the 9-keto carbonyls of the dimer. The single mutants and a complete set of double mutants were studied using EPR, ENDOR, and TRIPLE resonance spectroscopy. The changes in the hydrogen bond situation of the primary donor were accompanied by changes in the dimer oxidation midpoint potential, ranging from 410 to 710 mV in the investigated mutants [Lin, X., Murchison, H. A., Nagarajan, V., Parson, W. W., Williams, J. C. & Allen, J. P. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 10265-10269]. It was found that the addition or removal of a hydrogen bond causes large shifts of the spin density between the two halves of the dimer. Measurements on double mutants showed that the unpaired electron can be gradually shifted from a localization on the L-half of the dimer to a localization on the M-half, depending on the hydrogen bond situation. As a control, the effects of the different hydrogen bonds on P.+ in the mutant HL(M202), which contains a BChlL-BPheM heterodimer as the primary donor with localized spin on the BChl aL [Bylina, E. J., & Youvan, D. C. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7226-7230; Schenck, C. C., Gaul, D., Steffen M., Boxer S. G., McDowell L., Kirmaier C., & Holten D. (1990) in Reaction Centers of Photosynthetic Bacteria (Michel-Beyerle M. E., Ed.) pp 229-238, Springer, Berlin] were studied. In this mutant only small local changes of the spin densities (< or = 10%) in the vicinity of the hydrogen bonds were observed. The effects of the introduced hydrogen bonds on the spin density distribution of the dimer in the mutants are discussed in terms of different orbital energies of the two BChl a moieties which are directly influenced by hydrogen bond formation. The observed changes of the spin density distribution for the double mutants are additive with respect to the single mutations.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Electron Spin Resonance Spectroscopy , Mutagenesis, Site-Directed , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/chemistry , Cations , Hydrogen Bonding , Light-Harvesting Protein Complexes , Macromolecular Substances , Molecular Structure , Photosynthetic Reaction Center Complex Proteins/genetics , Rhodobacter sphaeroides/genetics
4.
Biochemistry ; 33(40): 12077-84, 1994 Oct 11.
Article in English | MEDLINE | ID: mdl-7918428

ABSTRACT

Reaction centers (RCs) from four species of purple bacteria, Rhodobacter sphaeroides, Rhodobacter capsulatus, Rhodospirillum rubrum, and the recently discovered bacterium Rhodospirillum centenum, have been characterized by optical spectroscopy [Wang, S., Lin, X., Woodbury, N. W., & Allen, J. P. (1994) Photosynth. Res. (submitted for publication)] and magnetic resonance spectroscopy. All RCs contain a bacteriochlorophyll (BChl) a dimer as the primary donor. For Rb. sphaeroides and Rs. rubrum the donor QY optical band is at approximately 865 nm, compared to approximately 850 nm for Rb. capsulatus and Rs. centenum. The primary donor in the RCs can be converted between these two forms by the addition or removal of charged detergents. The electronic structure of the cation radical of the primary electron donor P+. was investigated in these species using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and electron nuclear triple resonance (TRIPLE) spectroscopy. The EPR line widths of P+. vary significantly and the ENDOR and Special TRIPLE spectra reveal drastic differences in the spin density distribution of the dimer for the different species. Reaction centers from Rb. sphaeroides and Rs. rubrum have a slightly asymmetric spin density distribution over the two halves of the dimer. The respective ratios are 2:1 and 1.6:1 in favor of the L-half of the BChl a dimer. In contrast, the spectra of P+. in reaction centers from Rb. capsulatus and Rs. centenum show an almost complete localization of the unpaired electron on the L-half of the dimer (ratio approximately 5:1).(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Electron Spin Resonance Spectroscopy , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter capsulatus/metabolism , Rhodobacter sphaeroides/metabolism , Rhodospirillum rubrum/metabolism , Electron Transport , Light-Harvesting Protein Complexes , Photosynthetic Reaction Center Complex Proteins/metabolism , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...