Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nutrients ; 16(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542714

ABSTRACT

Obesity is a risk factor for many diseases, such as type 2 diabetes and cardiovascular diseases. In line with the need for precision medicine, the search for biomarkers reporting the progression of obesity- and diet-associated disorders is urgent. We used NMR to determine the metabolomics profile of key organs (lung, liver, heart, skeletal muscle, kidney, and brain) and serum from male C57Bl/6J mice (5 weeks old) fed for 6, 10, and 14 weeks on a high-fat and high-sucrose diet (HFHSD) vs. a standard diet (STD). We determined metabolite concentrations in the organs at each time point, which allowed us to discriminate age- and diet-related effects as well as the interactions between both, highlighting the need to evaluate the influence of age as a confounding factor on metabolic signatures. Notably, the analysis revealed the influence of time on metabolite concentrations in the STD condition, probably reflecting the juvenile-to-adult transition. Variations impacted the liver and lung metabolites, revealing the strong influence of the HFHS diet on normal metabolism maturation during youth.


Subject(s)
Diabetes Mellitus, Type 2 , Sucrose , Mice , Male , Animals , Sucrose/metabolism , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/complications , Cross-Sectional Studies , Obesity/metabolism , Metabolomics , Liver/metabolism , Mice, Inbred C57BL
2.
Nutrients ; 15(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38004183

ABSTRACT

Progressive decline in pancreatic beta-cell function is central to the pathogenesis of type 2 diabetes (T2D). Here, we explore the relationship between the beta cell and its nutritional environment, asking how an excess of energy substrate leads to altered energy production and subsequent insulin secretion. Alterations in intracellular metabolic homeostasis are key markers of islets with T2D, but changes in cellular metabolite exchanges with their environment remain unknown. We answered this question using nuclear magnetic resonance-based quantitative metabolomics and evaluated the consumption or secretion of 31 extracellular metabolites from healthy and T2D human islets. Islets were also cultured under high levels of glucose and/or palmitate to induce gluco-, lipo-, and glucolipotoxicity. Biochemical analyses revealed drastic alterations in the pyruvate and citrate pathways, which appear to be associated with mitochondrial oxoglutarate dehydrogenase (OGDH) downregulation. We repeated these manipulations on the rat insulinoma-derived beta-pancreatic cell line (INS-1E). Our results highlight an OGDH downregulation with a clear effect on the pyruvate and citrate pathways. However, citrate is directed to lipogenesis in the INS-1E cells instead of being secreted as in human islets. Our results demonstrate the ability of metabolomic approaches performed on culture media to easily discriminate T2D from healthy and functional islets.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Rats , Animals , Humans , Pyruvic Acid/metabolism , Diabetes Mellitus, Type 2/metabolism , Citric Acid/pharmacology , Citric Acid/metabolism , Insulin-Secreting Cells/metabolism , Glucose/pharmacology , Glucose/metabolism , Insulin/metabolism
3.
Sci Rep ; 13(1): 17733, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853114

ABSTRACT

Lactate accumulation and acidification in tumours are a cancer hallmark associated with the Warburg effect. Lactic acidosis correlates with cancer malignancy, and the benefit it offers to tumours has been the subject of numerous hypotheses. Strikingly, lactic acidosis enhances cancer cell survival to environmental glucose depletion by repressing high-rate glycolysis and lactic fermentation, and promoting an oxidative metabolism involving reactivated respiration. We used real-time NMR to evaluate how cytosolic lactate accumulation up to 40 mM and acidification up to pH 6.5 individually impact glucose consumption, lactate production and pyruvate evolution in isolated cytosols. We used a reductive cell-free system (CFS) to specifically study cytosolic metabolism independently of other Warburg-regulatory mechanisms found in the cell. We assessed the impact of lactate and acidification on the Warburg metabolism of cancer cytosols, and whether this effect extended to different cytosolic phenotypes of lactic fermentation and cancer. We observed that moderate acidification, independently of lactate concentration, drastically reduces the glucose consumption rate and halts lactate production in different lactic fermentation phenotypes. In parallel, for Warburg-type CFS lactate supplementation induces pyruvate accumulation at control pH, and can maintain a higher cytosolic pyruvate pool at low pH. Altogether, we demonstrate that intracellular acidification accounts for the direct repression of lactic fermentation by the Warburg-associated lactic acidosis.


Subject(s)
Acidosis, Lactic , Neoplasms , Humans , Lactic Acid/metabolism , Acidosis, Lactic/metabolism , Fermentation , Cell-Free System/metabolism , Glycolysis , Neoplasms/pathology , Pyruvates/metabolism , Glucose/metabolism , Hydrogen-Ion Concentration
4.
Cancers (Basel) ; 15(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36900208

ABSTRACT

Lactic acidosis, a hallmark of solid tumour microenvironment, originates from lactate hyperproduction and its co-secretion with protons by cancer cells displaying the Warburg effect. Long considered a side effect of cancer metabolism, lactic acidosis is now known to play a major role in tumour physiology, aggressiveness and treatment efficiency. Growing evidence shows that it promotes cancer cell resistance to glucose deprivation, a common feature of tumours. Here we review the current understanding of how extracellular lactate and acidosis, acting as a combination of enzymatic inhibitors, signal, and nutrient, switch cancer cell metabolism from the Warburg effect to an oxidative metabolic phenotype, which allows cancer cells to withstand glucose deprivation, and makes lactic acidosis a promising anticancer target. We also discuss how the evidence about lactic acidosis' effect could be integrated in the understanding of the whole-tumour metabolism and what perspectives it opens up for future research.

5.
J Adv Res ; 43: 163-174, 2023 01.
Article in English | MEDLINE | ID: mdl-36585106

ABSTRACT

INTRODUCTION: Although the physiological role of the C-terminal hydrolase domain of the soluble epoxide hydrolase (sEH-H) is well investigated, the function of its N-terminal phosphatase activity (sEH-P) remains unknown. OBJECTIVES: This study aimed to assess in vivo the physiological role of sEH-P. METHODS: CRISPR/Cas9 was used to generate a novel knock-in (KI) rat line lacking the sEH-P activity. RESULTS: The sEH-P KI rats has a decreased metabolism of lysophosphatidic acids to monoacyglycerols. KI rats grew almost normally but with less weight and fat mass gain while insulin sensitivity was increased compared to wild-type rats. This lean phenotype was more marked in males than in female KI rats and mainly due to decreased food consumption and enhanced energy expenditure. In fact, sEH-P KI rats had an increased lipolysis allowing to supply fatty acids as fuel to potentiate brown adipose thermogenesis under resting condition and upon cold exposure. The potentiation of thermogenesis was abolished when blocking PPARγ, a nuclear receptor activated by intracellular lysophosphatidic acids, but also when inhibiting simultaneously sEH-H, showing a functional interaction between the two domains. Furthermore, sEH-P KI rats fed a high-fat diet did not gain as much weight as the wild-type rats, did not have increased fat mass and did not develop insulin resistance or hepatic steatosis. In addition, sEH-P KI rats exhibited enhanced basal cardiac mitochondrial activity associated with an enhanced left ventricular contractility and were protected against cardiac ischemia-reperfusion injury. CONCLUSION: Our study reveals that sEH-P is a key player in energy and fat metabolism and contributes together with sEH-H to the regulation of cardiometabolic homeostasis. The development of pharmacological inhibitors of sEH-P appears of crucial importance to evaluate the interest of this promising therapeutic strategy in the management of obesity and cardiac ischemic complications.


Subject(s)
Epoxide Hydrolases , Heart Injuries , Obesity , Animals , Female , Male , Rats , CRISPR-Cas Systems , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Heart Diseases/genetics , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Injuries/genetics , Heart Injuries/metabolism , Heart Injuries/pathology , Insulin Resistance/genetics , Lysophospholipids , Obesity/genetics , Obesity/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Reperfusion Injury/genetics
6.
Nutrients ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36615754

ABSTRACT

Interactions between mitochondria and the endoplasmic reticulum, known as MAMs, are altered in the liver in obesity, which contributes to disruption of the insulin signaling pathway. In addition, the plasma level of glycine is decreased in obesity, and the decrease is strongly correlated with the severity of insulin resistance. Certain nutrients have been shown to regulate MAMs; therefore, we tested whether glycine supplementation could reduce insulin resistance in the liver by promoting MAM integrity. Glycine (5 mM) supported MAM integrity and insulin response in primary rat hepatocytes cultured under control and lipotoxic (palmitate 500 µM) conditions for 18 h. In contrast, in C57 BL/6 JOlaHsd mice (male, 6 weeks old) fed a high-fat, high-sucrose diet (HFHS) for 16 weeks, glycine supplementation (300 mg/kg) in drinking water during the last 6 weeks (HFHS-Gly) did not reverse the deleterious impact of HFHS-feeding on liver MAM integrity. In addition, glycine supplementation worsened fasting glycemia and glycemic response to intraperitoneal pyruvate injection compared to HFHS. The adverse impact of glycine supplementation on hepatic gluconeogenesis was further supported by the higher oxaloacetate/acetyl-CoA ratio in the liver in HFHS-Gly compared to HFHS. Although glycine improves MAM integrity and insulin signaling in the hepatocyte in vitro, no beneficial effect was found on the overall metabolic profile of HFHS-Gly-fed mice.


Subject(s)
Glucose Intolerance , Insulin Resistance , Male , Rats , Mice , Animals , Glucose Intolerance/metabolism , Insulin Resistance/physiology , Gluconeogenesis , Glycine/pharmacology , Liver/metabolism , Obesity/drug therapy , Obesity/metabolism , Insulin , Diet, High-Fat/adverse effects , Dietary Supplements , Mice, Inbred C57BL
7.
Commun Biol ; 4(1): 217, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594203

ABSTRACT

During the cancerous transformation of normal hepatocytes into hepatocellular carcinoma (HCC), the enzyme catalyzing the first rate-limiting step of glycolysis, namely the glucokinase (GCK), is replaced by the higher affinity isoenzyme, hexokinase 2 (HK2). Here, we show that in HCC tumors the highest expression level of HK2 is inversely correlated to GCK expression, and is associated to poor prognosis for patient survival. To further explore functional consequences of the GCK-to-HK2 isoenzyme switch occurring during carcinogenesis, HK2 was knocked-out in the HCC cell line Huh7 and replaced by GCK, to generate the Huh7-GCK+/HK2- cell line. HK2 knockdown and GCK expression rewired central carbon metabolism, stimulated mitochondrial respiration and restored essential metabolic functions of normal hepatocytes such as lipogenesis, VLDL secretion, glycogen storage. It also reactivated innate immune responses and sensitivity to natural killer cells, showing that consequences of the HK switch extend beyond metabolic reprogramming.


Subject(s)
Energy Metabolism , Glucokinase/metabolism , Hexokinase/metabolism , Immunity, Innate , Lipogenesis , Liver Neoplasms/enzymology , Cell Line, Tumor , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Glucokinase/genetics , Hexokinase/genetics , Humans , Isoenzymes , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Signal Transduction
8.
Mol Ther Methods Clin Dev ; 18: 880-892, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32953937

ABSTRACT

We have determined whether orange juice-derived nanovesicles (ONVs) could be used for the treatment of obesity-associated intestinal complications. ONVs were characterized by lipidomic, metabolomic, electron microscopy. In vitro, intestinal barriers (IBs = Caco-2+HT-29-MTX) were treated with ONVs and co-cultured with adipocytes to monitor IB fat release. In vivo, obesity was induced with a high-fat, high-sucrose diet (HFHSD mice) for 12 weeks. Then, half of HFHSD mice were gavaged with ONVs. One-month ONV treatment did not modify HFHSD-induced insulin resistance but reversed diet-induced gut modifications. In the jejunum, ONVs increased villi size, reduced triglyceride content, and modulated mRNA levels of genes involved in immune response (tumor necrosis factor [TNF]-α and interleukin [IL]-1ß), barrier permeability (CLDN1, OCLN, ZO1), fat absorption, and chylomicron release. ONVs targeted microsomal triglyceride transfer protein (MTP) and angiopoietin-like protein-4 (ANGPTL4), two therapeutic targets to reduce plasma lipids and inflammation in gastrointestinal diseases. Interestingly, ONV treatment did not aggravate liver steatosis, as MTP mRNA was increased in the liver. Therefore, ONVs protected both intestine and the liver from fat overload associated with the HFHSD. As ONVs concentrated amino acids and bioactive lipids versus orange juice, which are deficient in obese patients, the use of ONVs as a dietary supplement could bring physiological relevant compounds in the jejunum to accelerate the restoration of intestinal functions during weight loss in obese patients.

9.
Int J Mol Sci ; 21(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961865

ABSTRACT

Biological organisms are constantly exposed to an immense repertoire of molecules that cover environmental or food-derived molecules and drugs, triggering a continuous flow of stimuli-dependent adaptations. The diversity of these chemicals as well as their concentrations contribute to the multiplicity of induced effects, including activation, stimulation, or inhibition of physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of life, has proven to be immensely sensitive and highly adaptive to chemical stimuli. Therefore, studying the effect of endo- or xenobiotics over cellular metabolism delivers valuable knowledge to apprehend potential cellular activity of individual molecules and evaluate their acute or chronic benefits and toxicity. The development of modern metabolomics technologies such as mass spectrometry or nuclear magnetic resonance spectroscopy now offers unprecedented solutions for the rapid and efficient determination of metabolic profiles of cells and more complex biological systems. Combined with the availability of well-established cell culture techniques, these analytical methods appear perfectly suited to determine the biological activity and estimate the positive and negative effects of chemicals in a variety of cell types and models, even at hardly detectable concentrations. Metabolic phenotypes can be estimated from studying intracellular metabolites at homeostasis in vivo, while in vitro cell cultures provide additional access to metabolites exchanged with growth media. This article discusses analytical solutions available for metabolic phenotyping of cell culture metabolism as well as the general metabolomics workflow suitable for testing the biological activity of molecular compounds. We emphasize how metabolic profiling of cell supernatants and intracellular extracts can deliver valuable and complementary insights for evaluating the effects of xenobiotics on cellular metabolism. We note that the concepts and methods discussed primarily for xenobiotics exposure are widely applicable to drug testing in general, including endobiotics that cover active metabolites, nutrients, peptides and proteins, cytokines, hormones, vitamins, etc.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Metabolomics/methods , Animals , Cell Culture Techniques , Culture Media , Humans , Metabolome , Xenobiotics/metabolism , Xenobiotics/pharmacology
10.
Anal Bioanal Chem ; 412(22): 5453-5463, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32556564

ABSTRACT

Cellular metabolomics has become key to elucidate mechanistic aspects in various fields such as cancerology or pharmacology, and is rapidly becoming a standard phenotyping tool accessible to the broad biological community. Acquisition of reliable spectroscopic datasets, such as nuclear magnetic resonance (NMR) spectra, to characterize biological systems depends on the elaboration of robust methods for cellular metabolites extraction. Previous studies have addressed many issues raised by these protocols, however with little pondering on ergonomic and practical aspects of the methods that impact their scalability, reproducibility and hence their suitability to high-throughput studies or their use by non-metabolomics experts. Here, we optimize a fast and ergonomic protocol for extraction of metabolites from adherent mammalian cells for NMR metabolomics studies. The proposed extraction protocol, including cell washing, metabolism quenching and actual extraction of intracellular metabolites, was first optimized on HeLa cells. Efficiency of the protocol, in its globality and for the different individual steps, was assessed by NMR quantification of 27 metabolites from cellular extracts. We show that a single PBS wash provides a seemly compromise between contamination from growth medium and leakage of intracellular metabolites. In HeLa cells, extraction using pure methanol, without cell scraping, recovered a higher amount of intracellular metabolites than the reference methanol/water/chloroform method with cell scraping, with yields varying across metabolite classes. Optimized and reference protocols were further tested on eight cell lines of miscellaneous nature, and inter-operator reproducibility was demonstrated. Our results stress the need for tailored extraction protocols and show that fast protocols minimizing time-consuming steps, without compromising extraction yields, are suitable for high-throughput metabolomics studies. Graphical abstract.


Subject(s)
Cell Adhesion , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Animals , Cell Line , Cell Line, Tumor , Culture Media , Ergonomics , High-Throughput Screening Assays , Humans , Mammals , Solvents/chemistry , Water/chemistry
11.
ACS Infect Dis ; 5(11): 1879-1886, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31545890

ABSTRACT

Dysentery is a major health threat that dramatically impacts childhood morbidity and mortality in developing countries. Various pathogenic agents cause dysentery, such as Shigella spp. and Escherichia coli, which are very closely related if not identical species. Sensitive and precise detection and identification of the infectious agent is important to target the best therapeutic strategy, but the differential diagnosis of these two groups remains a challenge using conventional methods. Here, we present a nuclear magnetic resonance (NMR) based multivariate classification model employing bacterial metabolic footprints in postculture growth media with remarkable segregation capability, including the discrimination of lactose negative E. coli and Shigella spp. Our results confirm the potential of metabolomic markers in the field of bacterial identification for the distinction of even very closely related species.


Subject(s)
Culture Media/chemistry , Escherichia coli/isolation & purification , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Shigella/isolation & purification , Culture Media/metabolism , Dysentery, Bacillary/microbiology , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Humans , Shigella/chemistry , Shigella/metabolism
12.
Thyroid ; 29(9): 1327-1335, 2019 09.
Article in English | MEDLINE | ID: mdl-31298651

ABSTRACT

Background: Resistance to thyroid hormone alpha (RTHα) is a rare genetic disease due to mutations in the THRA gene, which encodes thyroid hormone receptor alpha 1 (TRα1). Since its first description in 2012, 46 cases of RTHα have been reported worldwide, corresponding to 26 different mutations of TRα1. RTHα patients share some common symptoms with hypothyroid patients, without significant reduction in thyroid hormone level. The high variability of clinical features and the absence of reliable biochemical markers make the diagnosis of this disease difficult. Some of these mutations have been recently modeled in mice. Methods: In our study, we used four different mouse models heterozygous for frameshift mutations in the Thra gene. Two of them are very close to human mutations, while the two others have not yet been found in patients. We characterized the metabolic phenotypes of urine and plasma samples collected from these four animal models using an untargeted nuclear magnetic resonance (NMR)-based metabolomic approach. Results: Multivariate statistical analysis of the metabolomic profiles shows that biofluids of mice that carry human-like mutations can be discriminated from controls. Metabolic signatures associated with Thra mutations in urine and plasma are stable over time and clearly differ from the metabolic fingerprint of hypothyroidism in the mouse. Conclusion: Our results provide a proof-of-principle that easily accessible NMR-based metabolic fingerprints of biofluids could be used to diagnose RTHα in humans.


Subject(s)
Body Fluids/metabolism , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Mutation , Thyroid Hormone Receptors alpha/genetics , Animals , Genes, erbA , Humans , Hypothyroidism/genetics , Male , Mice , Mice, Inbred C57BL
13.
Stem Cells Int ; 2019: 9323864, 2019.
Article in English | MEDLINE | ID: mdl-31223312

ABSTRACT

White adipose tissues are functionally heterogeneous and differently manage the excess of energy supply. While the expansion of subcutaneous adipose tissues (SAT) is protective in obesity, that of visceral adipose tissues (VAT) correlates with the emergence of metabolic diseases. Maintained in fat pads throughout life, adipose stem cells (ASC) are mesenchymal-like stem cells with adipogenesis and multipotent differentiation potential. ASC from distinct fat pads have long been reported to present distinct proliferation and differentiation potentials that are maintained in culture, yet the origins of these intrinsic differences are still unknown. Metabolism is central to stem cell fate decision in line with environmental changes. In this study, we performed high-resolution nuclear magnetic resonance (NMR) metabolomic analyses of ASC culture supernatants in order to characterize their metabolic phenotype in culture. We identified and quantified 29 ASC exometabolites and evaluated their consumption or secretion over 72 h of cell culture. Both ASC used glycolysis and mitochondrial metabolism, as evidenced by the high secretions of lactate and citrate, respectively, but V-ASC mostly used glycolysis. By varying the composition of the cell culture medium, we showed that glutaminolysis, rather than glycolysis, supported the secretion of pyruvate, alanine, and citrate, evidencing a peculiar metabolism in ASC cells. The comparison of the two types of ASC in glutamine-free culture conditions also revealed the role of glutaminolysis in the limitation of pyruvate routing towards the lactate synthesis, in S-ASC but not in V-ASC. Altogether, our results suggest a difference between depots in the capacity of ASC mitochondria to assimilate pyruvate, with probable consequences on their differentiation potential in pathways requiring an increased mitochondrial activity. These results highlight a pivotal role of metabolic mechanisms in the discrimination between ASC and provide new perspectives in the understanding of their functional differences.

14.
ACS Synth Biol ; 7(1): 218-226, 2018 01 19.
Article in English | MEDLINE | ID: mdl-28915016

ABSTRACT

A counterintuitive cell-free protein synthesis (CFPS) strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL), triggers the development of hybrid systems composed of RRL ribosome-free supernatant complemented with ribosomes from different mammalian cell-types. Hybrid RRL systems maintain translational properties of the original ribosome cell types, and deliver protein expression levels similar to RRL. Here, we show that persistent ribosome-associated metabolic activity consuming ATP is a major obstacle for maximal protein yield. We provide a detailed picture of hybrid CFPS systems energetic metabolism based on real-time nuclear magnetic resonance (NMR) investigation of metabolites kinetics. We demonstrate that protein synthesis capacity has an upper limit at native ribosome concentration and that lower amounts of the ribosomal fraction optimize energy fluxes toward protein translation, consequently increasing CFPS yield. These results provide a rationalized strategy for further mammalian CFPS developments and reveal the potential of real-time NMR metabolism phenotyping for optimization of cell-free protein expression systems.


Subject(s)
Energy Metabolism/physiology , Protein Biosynthesis , Reticulocytes/metabolism , Animals , Cell-Free System , Cycloheximide/pharmacology , Glucose/metabolism , HEK293 Cells , HeLa Cells , Humans , Kinetics , Magnetic Resonance Spectroscopy , Phosphocreatine/metabolism , Protein Biosynthesis/drug effects , Rabbits , Reticulocytes/cytology , Ribosomes/metabolism
15.
Vertex ; 29(137): 51-54, 2018 Jan.
Article in Spanish | MEDLINE | ID: mdl-30605195

ABSTRACT

Virtual reality involves the creation of an interactive three-dimensional virtual world which the user can navigate. This technology is proposed for anxiety disorders as an alternative to the in vivo and imaginative exposure provided in cognitive behavioral therapy, the gold standard psychoterapeutic treatment for this pathology. According to a signifcant number of publications including meta-analysis, virtual reality therapy exposure is at least equivalent to in vivo exposure in specifc phobias, panic disorder with agoraphobia, post-traumatic stress disorder and social phobia. A fundamental feature of the virtual experience is presence, which is commonly defned as the mental experience of "being there", in the virtual world. This concept prompts us to consider virtual reality a therapy beyond exposition, more like an embodied therapy.


Subject(s)
Anxiety Disorders , Phobic Disorders , Stress Disorders, Post-Traumatic , Virtual Reality Exposure Therapy , Anxiety Disorders/therapy , Cognitive Behavioral Therapy , Humans , Phobic Disorders/therapy , Stress Disorders, Post-Traumatic/therapy
16.
Neuropsychiatr Dis Treat ; 12: 877-81, 2016.
Article in English | MEDLINE | ID: mdl-27143889

ABSTRACT

OBJECTIVE: Fear of falling is defined as an ongoing concern about falling that is not explained by physical examination. Focusing on the psychological dimension of this pathology (phobic reaction to walking), we looked at how virtual reality associated with serious games can be used to treat this pathology. METHODS: Participants with fear of falling were randomly assigned to either a treatment group or a waiting list. The therapy consisted of 12 weekly sessions of virtual reality exposure therapy associated with serious games. RESULTS: Sixteen participants were included. The mean age of the treatment group was 72 years and that of the control group was 69 years. Participants' scores on the fear of falling measure improved after treatment with virtual reality associated with serious games, leading to a significant difference between the two groups. CONCLUSION: Virtual reality exposure therapy associated with serious games can be used in the treatment of fear of falling. The two techniques are complementary (top-down and bottom-up processes). To our knowledge, this is the first time that a combination of the two has been assessed. There was a specific effect of this therapy on the phobic reaction. Further studies are needed to confirm its efficacy and identify its underlying mechanism.

17.
J Telemed Telecare ; 22(4): 215-20, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26253746

ABSTRACT

Virtual reality therapy is already used for anxiety disorders as an alternative to in vivo and in imagino exposure. To our knowledge, however, no one has yet proposed using remote virtual reality (e-virtual reality). The aim of the present study was to assess e-virtual reality in an acrophobic population. Six individuals with acrophobia each underwent six sessions (two sessions per week) of virtual reality exposure therapy. The first three were remote sessions, while the last three were traditional sessions in the physical presence of the therapist. Anxiety (STAI form Y-A, visual analog scale, heart rate), presence, technical difficulties and therapeutic alliance (Working Alliance Inventory) were measured. In order to control the conditions in which these measures were made, all the sessions were conducted in hospital. None of the participants dropped out. The remote sessions were well accepted. None of the participants verbalized reluctance. No major technical problems were reported. None of the sessions were cancelled or interrupted because of software incidents. Measures (anxiety, presence, therapeutic alliance) were comparable across the two conditions. e-Virtual reality can therefore be used to treat acrophobic disorders. However, control studies are needed to assess online feasibility, therapeutic effects and the mechanisms behind online presence.


Subject(s)
Phobic Disorders/therapy , Virtual Reality Exposure Therapy/methods , Adult , Female , Humans , Male , Phobic Disorders/etiology , Pilot Projects , User-Computer Interface
18.
J Virol ; 88(5): 2584-99, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24352439

ABSTRACT

UNLABELLED: Hepatitis B virus (HBV) is a major human pathogen that causes serious liver disease and 600,000 deaths annually. Approved therapies for treating chronic HBV infections usually target the multifunctional viral polymerase (hPOL). Unfortunately, these therapies--broad-spectrum antivirals--are not general cures, have side effects, and cause viral resistance. While hPOL remains an attractive therapeutic target, it is notoriously difficult to express and purify in a soluble form at yields appropriate for structural studies. Thus, no empirical structural data exist for hPOL, and this impedes medicinal chemistry and rational lead discovery efforts targeting HBV. Here, we present an efficient strategy to overexpress recombinant hPOL domains in Escherichia coli, purifying them at high yield and solving their known aggregation tendencies. This allowed us to perform the first structural and biophysical characterizations of hPOL domains. Apo-hPOL domains adopt mainly α-helical structures with small amounts of ß-sheet structures. Our recombinant material exhibited metal-dependent, reverse transcriptase activity in vitro, with metal binding modulating the hPOL structure. Calcomine orange 2RS, a small molecule that inhibits duck HBV POL activity, also inhibited the in vitro priming activity of recombinant hPOL. Our work paves the way for structural and biophysical characterizations of hPOL and should facilitate high-throughput lead discovery for HBV. IMPORTANCE: The viral polymerase from human hepatitis B virus (hPOL) is a well-validated therapeutic target. However, recombinant hPOL has a well-deserved reputation for being extremely difficult to express in a soluble, active form in yields appropriate to the structural studies that usually play an important role in drug discovery programs. This has hindered the development of much-needed new antivirals for HBV. However, we have solved this problem and report here procedures for expressing recombinant hPOL domains in Escherichia coli and also methods for purifying them in soluble forms that have activity in vitro. We also present the first structural and biophysical characterizations of hPOL. Our work paves the way for new insights into hPOL structure and function, which should assist the discovery of novel antivirals for HBV.


Subject(s)
Gene Products, pol/biosynthesis , Gene Products, pol/chemistry , Hepatitis B virus/enzymology , Algorithms , Circular Dichroism , Gene Products, pol/isolation & purification , Hepatitis B virus/genetics , Humans , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism
19.
Nat Chem Biol ; 9(9): 540-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23851574

ABSTRACT

Hepatitis B virus (HBV) is an infectious, potentially lethal human pathogen. However, there are no effective therapies for chronic HBV infections. Antiviral development is hampered by the lack of high-resolution structures for essential HBV protein-protein interactions. The interaction between preS1, an HBV surface-protein domain, and its human binding partner, γ2-adaptin, subverts the membrane-trafficking apparatus to mediate virion export. This interaction is a putative drug target. We report here atomic-resolution descriptions of the binding thermodynamics and structural biology of the interaction between preS1 and the EAR domain of γ2-adaptin. NMR, protein engineering, X-ray crystallography and MS showed that preS1 contains multiple γ2-EAR-binding motifs that mimic the membrane-trafficking motifs (and binding modes) of host proteins. These motifs localize together to a relatively rigid, functionally important region of preS1, an intrinsically disordered protein. The preS1-γ2-EAR interaction was relatively weak and efficiently outcompeted by a synthetic peptide. Our data provide the structural road map for developing peptidomimetic antivirals targeting the γ2-EAR-preS1 interaction.


Subject(s)
Adaptor Protein Complex gamma Subunits/metabolism , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/metabolism , Molecular Mimicry , Protein Precursors/chemistry , Protein Precursors/metabolism , Adaptor Protein Complex gamma Subunits/chemistry , Amino Acid Motifs , Protein Structure, Tertiary , Thermodynamics
20.
Psychiatry Res ; 200(2-3): 614-9, 2012 Dec 30.
Article in English | MEDLINE | ID: mdl-22951333

ABSTRACT

Gaze aversion could be a central component of social phobia. Fear of blushing is a symptom of social anxiety disorder (SAD) but is not yet described as a specific diagnosis in psychiatric classifications. Our research consists of comparing gaze aversion in SAD participants with or without fear of blushing in front of pictures of different emotional faces using an eye tracker. Twenty-six participants with DSM-IV SAD and expressed fear of blushing (SAD+FB) were recruited in addition to twenty-five participants with social phobia and no fear of blushing (SAD-FB). Twenty-four healthy participants aged and sex matched constituted the control group. We studied the number of fixations and the dwell time in the eyes area on the pictures. The results showed gaze avoidance in the SAD-FB group when compared to controls and when compared to the SAD+FB group. However we found no significant difference between SAD+FB and controls. We also observed a correlation between the severity of the phobia and the degree of gaze avoidance across groups. These findings seem to support the claim that social phobia is a heterogeneous disorder. Further research is advised to decide whether fear of blushing can constitute a subtype with specific behavioral characteristics.


Subject(s)
Anxiety/psychology , Blushing/psychology , Fear/psychology , Phobic Disorders/psychology , Adult , Aged , Emotions , Eye Movements , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...