Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36431729

ABSTRACT

MgF2-coated screws made of a Mg-2Y-1Mn-1Zn alloy, called NOVAMag® fixation screws (biotrics bioimplants AG), were tested in vitro for potential applications as biodegradable implants, and showed a controlled corrosion rate compared to non-coated screws. While previous studies regarding coated Mg-alloys have been carried out on flat sample surfaces, the present work focused on functional materials and final biomedical products. The substrates under study had a complex 3D geometry and a nearly cylindrical-shaped shaft. The corrosion rate of the samples was investigated using an electrochemical setup, especially adjusted to evaluate these types of samples, and thus, helped to improve an already patented coating process. A MgF2/MgO coating in the µm-range was characterized for the first time using complementary techniques. The coated screws revealed a smoother surface than the non-coated ones. Although the cross-section analysis revealed some fissures in the coating structure, the electrochemical studies using Hanks' salt solution demonstrated the effective role of MgF2 in retarding the alloy degradation during the initial stages of corrosion up to 24 h. The values of polarization resistance (Rp) of the coated samples extrapolated from the Nyquist plots were significantly higher than those of the non-coated samples, and impedance increased significantly over time. After 1200 s exposure, the Rp values were 1323 ± 144 Ω.cm2 for the coated samples and 1036 ± 198 Ω.cm2 for the non-coated samples, thus confirming a significant decrease in the degradation rate due to the MgF2 layer. The corrosion rates varied from 0.49 mm/y, at the beginning of the experiment, to 0.26 mm/y after 1200 s, and decreased further to 0.01 mm/y after 24 h. These results demonstrated the effectiveness of the applied MgF2 film in slowing down the corrosion of the bulk material, allowing the magnesium-alloy screws to be competitive as dental and orthopedic solutions for the biodegradable implants market.

2.
Bioact Mater ; 12: 64-70, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35087963

ABSTRACT

In this exploratory work, micrometric radiopaque W-Fe-Mn-C coatings were produced by magnetron sputtering plasma deposition, for the first time, with the aim to make very thin Fe-Mn stents trackable by fluoroscopy. The power of Fe-13Mn-1.2C target was kept constant at 400 W while that of W target varied from 100 to 400 W producing three different coatings referred to as P100, P200, P400. The effect of the increased W power on coatings thickness, roughness, structure, corrosion behavior and radiopacity was investigated. The coatings showed a power-dependent thickness and W concentration, different roughness values while a similar and uniform columnar structure. An amorphous phase was detected for both P100 and P200 coatings while γ-Fe, bcc-W and W3C phases found for P400. Moreover, P200 and P400 showed a significantly higher corrosion rate (CR) compared to P100. The presence of W, W3C as well as the Fe amount variation determined two different micro-galvanic corrosion mechanisms significantly changing the CR of coatings, 0.26 ± 0.02, 59.68 ± 1.21 and 59.06 ± 1.16 µm/year for P100, P200 and P400, respectively. Sample P200 with its most uniform morphology, lowest roughness (RMS = 3.9 ± 0.4 nm) and good radiopacity (∼6%) appeared the most suitable radiopaque biodegradable coating investigated in this study.

SELECTION OF CITATIONS
SEARCH DETAIL
...