Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 49(11): 3761-3771, 2022 09.
Article in English | MEDLINE | ID: mdl-35732972

ABSTRACT

PURPOSE: Non-invasive imaging is a key clinical tool for detection and treatment monitoring of infections. Existing clinical imaging techniques are frequently unable to distinguish infection from tumors or sterile inflammation. This challenge is well-illustrated by prosthetic joint infections that often complicate joint replacements. D-methyl-11C-methionine (D-11C-Met) is a new bacteria-specific PET radiotracer, based on an amino acid D-enantiomer, that is rapidly incorporated into the bacterial cell wall. In this manuscript, we describe the biodistribution, radiation dosimetry, and initial human experience using D-11C-Met in patients with suspected prosthetic joint infections. METHODS: 614.5 ± 100.2 MBq of D-11C-Met was synthesized using an automated in-loop radiosynthesis method and administered to six healthy volunteers and five patients with suspected prosthetic joint infection, who were studied by PET/MRI. Time-activity curves were used to calculate residence times for each source organ. Absorbed doses to each organ and body effective doses were calculated using OLINDA/EXM 1.1 with both ICRP 60 and ICRP 103 tissue weighting factors. SUVmax and SUVpeak were calculated for volumes of interest (VOIs) in joints with suspected infection, the unaffected contralateral joint, blood pool, and soft tissue background. A two-tissue compartment model was used for kinetic modeling. RESULTS: D-11C-Met was well tolerated in all subjects. The tracer showed clearance from both urinary (rapid) and hepatobiliary (slow) pathways as well as low effective doses. Moreover, minimal background was observed in both organs with resident micro-flora and target organs, such as the spine and musculoskeletal system. Additionally, D-11C-Met showed increased focal uptake in areas of suspected infection, demonstrated by a significantly higher SUVmax and SUVpeak calculated from VOIs of joints with suspected infections compared to the contralateral joints, blood pool, and background (P < 0.01). Furthermore, higher distribution volume and binding potential were observed in suspected infections compared to the unaffected joints. CONCLUSION: D-11C-Met has a favorable radiation profile, minimal background uptake, and fast urinary extraction. Furthermore, D-11C-Met showed increased uptake in areas of suspected infection, making this a promising approach. Validation in larger clinical trials with a rigorous gold standard is still required.


Subject(s)
Methionine , Positron-Emission Tomography , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography/methods , Radiometry , Tissue Distribution
2.
Nat Commun ; 13(1): 1219, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264559

ABSTRACT

A major obstacle to achieving long-term antiretroviral (ART) free remission or functional cure of HIV infection is the presence of persistently infected cells that establish a long-lived viral reservoir. HIV largely resides in anatomical regions that are inaccessible to routine sampling, however, and non-invasive methods to understand the longitudinal tissue-wide burden of HIV persistence are urgently needed. Positron emission tomography (PET) imaging is a promising strategy to identify and characterize the tissue-wide burden of HIV. Here, we assess the efficacy of using immunoPET imaging to characterize HIV reservoirs and identify anatomical foci of persistent viral transcriptional activity using a radiolabeled HIV Env-specific broadly neutralizing antibody, 89Zr-VRC01, in HIV-infected individuals with detectable viremia and on suppressive ART compared to uninfected controls (NCT03729752). We also assess the relationship between PET tracer uptake in tissues and timing of ART initiation and direct HIV protein expression in CD4 T cells obtained from lymph node biopsies. We observe significant increases in 89Zr-VRC01 uptake in various tissues (including lymph nodes and gut) in HIV-infected individuals with detectable viremia (N = 5) and on suppressive ART (N = 5) compared to uninfected controls (N = 5). Importantly, PET tracer uptake in inguinal lymph nodes in viremic and ART-suppressed participants significantly and positively correlates with HIV protein expression measured directly in tissue. Our strategy may allow non-invasive longitudinal characterization of residual HIV infection and lays the framework for the development of immunoPET imaging in a variety of other infectious diseases.


Subject(s)
HIV Infections , HIV-1 , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , CD4-Positive T-Lymphocytes , HIV Infections/diagnostic imaging , Humans , Positron-Emission Tomography , Viral Load , Viremia/diagnostic imaging
3.
Neurooncol Pract ; 8(1): 91-97, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33664973

ABSTRACT

BACKGROUND: Amino acid PET imaging of brain tumors has been shown to play an important role in predicting tumor grade, delineation of tumor margins, and differentiating tumor recurrence from the background of postradiation changes, but is not commonly used in clinical practice because of high cost. We propose that PET/MRI imaging of patients grouped to the day of tracer radiosynthesis will significantly decrease the cost of PET imaging, which will improve patient access to PET. METHODS: Seventeen patients with either primary brain tumors or metastatic brain tumors were recruited for imaging on 3T PET/MRI and were scanned on 4 separate days in groups of 3 to 5 patients. The first group of consecutively imaged patients contained 3 patients, followed by 2 groups of 5 patients, and a last group of 4 patients. RESULTS: For each of the patients, standard of care gadolinium-enhanced MRI and dynamic PET imaging with 18F-FDOPA amino acid tracer was obtained. The total cost savings of scanning 17 patients in batches of 4 as opposed to individual radiosynthesis was 48.5% ($28 321). Semiquantitative analysis of tracer uptake in normal brain were performed with appropriate accumulation and expected subsequent washout. CONCLUSION: Amino acid PET tracers have been shown to play a critical role in the characterization of brain tumors but their adaptation to clinical practice has been limited because of the high cost of PET. Scheduling patient imaging to maximally use the radiosynthesis of imaging tracer significantly reduces the cost of PET and results in increased availability of PET tracer use in neuro-oncology.

4.
J Vis Exp ; (150)2019 08 08.
Article in English | MEDLINE | ID: mdl-31449234

ABSTRACT

Imaging techniques that reflect dynamic bone turnover may aid in characterizing a wide range of bone pathologies. Bone is a dynamic tissue undergoing continuous remodeling with the competing activity of osteoblasts, which produce the new bone matrix, and osteoclasts, whose function is to eliminate mineralized bone. [18F]-NaF is a positron emission tomography (PET) radiotracer that enables visualization of bone metabolism. [18F]-NaF is chemically absorbed into hydroxyapatite in the bone matrix by osteoblasts and can thus noninvasively detect osteoblastic activity, which is occult to conventional imaging techniques. Kinetic modeling of dynamic [18F]-NaF-PET data provides detailed quantitative measures of bone metabolism. Conventional semi-quantitative PET data, which utilizes standardized uptake values (SUVs) as a measure of radiotracer activity, is referred to as a static technique due to its snapshot of tracer uptake in time.  Kinetic modeling, however, utilizes dynamic image data where tracer levels are continuously acquired providing tracer uptake temporal resolution. From the kinetic modeling of dynamic data, quantitative values like blood flow and metabolic rate (i.e., potentially informative metrics of tracer dynamics) can be extracted, all with respect to the measured activity in the image data. When combined with dual modality PET-MRI, region-specific kinetic data can be correlated with anatomically registered high-resolution structural and pathologic information afforded by MRI. The goal of this methodological manuscript is to outline detailed techniques for performing and analyzing dynamic [18F]-NaF-PET-MRI data. The lumbar facet joint is a common site of degenerative arthritis disease and a common cause for axial low back pain.  Recent studies suggest [18F]-NaF-PET may serve as a useful biomarker of painful facetogenic disease.  The human lumbar facet joint will, therefore, be used as a prototypical region of interest for dynamic [18F]-NaF-PET-MRI analysis in this manuscript.


Subject(s)
Bone Remodeling/physiology , Fluorine Radioisotopes/therapeutic use , Low Back Pain/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Female , Humans , Low Back Pain/pathology , Male
5.
Mol Imaging Biol ; 20(3): 492-500, 2018 06.
Article in English | MEDLINE | ID: mdl-29192363

ABSTRACT

PURPOSE: Newer high-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability to preserve diagnostic image quality with low count density, while maintaining a high raw photon detection sensitivity that would allow for a reduction in injected dose or rapid data acquisition. To assess this, we performed quantitative and visual assessments of the PET images acquired using a highly sensitive (23.3 cps/kBq) large field of view (25-cm axial) silicon photomultiplier (SiPM)-based TOF PET (400-ps timing resolution) integrated with 3 T-MRI in comparison to PET images acquired on non-TOF PET/x-ray computed tomography (CT) systems. PROCEDURES: Whole-body 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET/CT was acquired for 15 patients followed by whole body PET/magnetic resonance imaging (MRI) with an average injected dose of 325 ± 84 MBq. The PET list mode data from PET/MRI were reconstructed using full datasets (4 min/bed) and reduced datasets (2, 1, 0.5, and 0.25 min/bed). Qualitative assessment between PET/CT and PET/MR images were made. A Likert-type scale between 1 and 5, 1 for non-diagnostic, 3 equivalent to PET/CT, and 5 superior quality, was used. Maximum and mean standardized uptake values (SUVmax and SUVmean) of normal tissues and lesions detected were measured and compared. RESULTS: Mean visual assessment scores were 3.54 ± 0.32, 3.62 ± 0.38, and 3.69 ± 0.35 for the brain and 3.05 ± 0.49, 3.71 ± 0.45, and 4.14 ± 0.44 for the whole-body maximum intensity projections (MIPs) for 1, 2, and 4 min/bed PET/MR images, respectively. The SUVmean values for normal tissues were lower and statistically significant for images acquired at 4, 2, 1, 0.5, and 0.25 min/bed on the PET/MR, with values of - 18 ± 28 % (p < 0.001), - 16 ± 29 % (p = 0.001), - 16 ± 31 % (p = 0.002), - 14 ± 35 % (p < 0.001), and - 13 ± 34 % (p = 0.002), respectively. SUVmax and SUVpeak values of all lesions were higher and statistically significant (p < 0.05) for 4, 2, 1, 0.50, and 0.25 min/bed PET/MR datasets. CONCLUSION: High-sensitivity TOF PET showed comparable but still better visual image quality even at a much reduced activity in comparison to lower-sensitivity non-TOF PET. Our data translates to a seven times reduction in either injection dose for the same time or total scan time for the same injected dose. This "ultra-sensitivity" PET system provides a path to clinically acceptable extremely low-dose FDG PET studies (e.g., sub 1 mCi injection or sub-mSv effective dose) or PET studies as short as 1 min/bed (e.g., 6 min of total scan time) to cover whole body without compromising diagnostic performance.


Subject(s)
Fluorodeoxyglucose F18/chemistry , Magnetic Resonance Imaging , Positron-Emission Tomography , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...