Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Clin Exp Dermatol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970536

ABSTRACT

BACKGROUND: Drug persistence is a crucial aspect of treatment success in psoriasis. OBJECTIVES: The scope of this manuscript is to record real-world evidence concerning drug survival of biologic agents used for psoriasis treatment and to detect associated modifying factors in Greece. METHODS: This was a retrospective cohort study based on data extracted from the nationwide Greek prescription system. Psoriatic patients, with or without concomitant psoriatic arthritis (PsA), that had initiated biologics between January 1st 2016 and December 31st 2020 were included. RESULTS: We included 8,819 patients who received 13,359 treatment lines. Among them, 76.8% were biologic naïve patients and 16.5% were diagnosed with concomitant PsA. The overall median drug survival was 34.3 (95% CI: 32.6-36.5) months. Drug persistence at 12, 24, 36 and 48 months of follow-up was 71.9%, 57.7%, 49.0% and 43.7%, respectively. Patients receiving brodalumab had the highest drug survival rate in the first two years, while secukinumab had the highest rates beyond this period. Overall, drug survival rates were higher in the 1st [median, 51.1 (95% CI: 47.1, not reached (NR) months] compared to the 2nd treatment line and onwards [median, 21.7 (95% CI: 20.0, 23.5) months]. Treatment line, PsA status, age and sex were found to significantly affect drug survival rates. CONCLUSIONS: Our findings confirm previous reports regarding the importance of efficient 1st line biologics and the vulnerability of patients to co-existent PsA. The utilitzation of antibodies against interleukins confer to high drug survival rates. These results will assist clinical management of psoriasis patients in Greece.

3.
Food Chem Toxicol ; 152: 112187, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33839215

ABSTRACT

It is well-established that long-term fasting improves metabolic health, enhances the total antioxidant capacity and increases well-being. MicroRNAs oversee energy homeostasis and metabolic processes and are widely used as circulating biomarkers to identify the metabolic state. This study investigated whether the expression levels of twenty-four metabolism-associated microRNAs are significantly altered following long-term fasting and if these changes correlate with biochemical and redox parameters in the plasma. Thirty-two participants with an average BMI of 28 kg/m2 underwent a 10-day fasting period with a daily intake of 250 kcal under medical supervision. RT-qPCR on plasma small-RNA extracts revealed that the levels of seven microRNAs (miR-19b-3p, miR-22-3p, miR-122-5p, miR-126-3p, miR-142-3p, miR-143-3p, and miR-145-5p) were significantly altered following fasting. Importantly, the expression levels of these microRNAs have been consistently shown to change in the exact opposite direction in pathological states including obesity, diabetes, nonalcoholic steatohepatitis, and cardiovascular disease. Linear regression analyses revealed that among the microRNAs analyzed, anti-inflammatory miR-146-5p expression displayed most correlations with the levels of different biochemical and redox parameters. In silico analysis of fasting-associated microRNAs demonstrated that they target pathways that are highly enriched for intracellular signaling such mTOR, FoxO and autophagy, as well as extracellular matrix (ECM) interactions and cell-senescence. Overall, these data are consistent with a model in which long-term fasting engages homeostatic mechanisms associated with specific microRNAs to improve metabolic signaling regardless of health status.


Subject(s)
Circulating MicroRNA/metabolism , Fasting/physiology , Adolescent , Adult , Aged , Circulating MicroRNA/blood , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Oxidative Stress/physiology , Signal Transduction/physiology , Young Adult
4.
Mov Disord ; 36(5): 1170-1179, 2021 05.
Article in English | MEDLINE | ID: mdl-33433033

ABSTRACT

BACKGROUND: New noninvasive and affordable molecular approaches that will complement current practices and increase the accuracy of Parkinson's disease (PD) diagnosis are urgently needed. Circular RNAs (circRNAs) are stable noncoding RNAs that accumulate with aging in neurons and are increasingly shown to regulate all aspects of neuronal development and function. OBJECTIVES: Τhe aims of this study were to identify differentially expressed circRNAs in blood mononuclear cells of patients with idiopathic PD and explore the competing endogenous RNA networks affected. METHODS: Eighty-seven circRNAs were initially selected based on relatively high gene expression in the human brain. More than half of these were readily detectable in blood mononuclear cells using real-time reverse transcription-polymerase chain reaction. Comparative expression analysis was then performed in blood mononuclear cells from 60 control subjects and 60 idiopathic subjects with PD. RESULTS: Six circRNAs were significantly down-regulated in patients with PD. The classifier that best distinguished PD consisted of four circRNAs with an area under the curve of 0.84. Cross-linking immunoprecipitation-sequencing data revealed that the RNA-binding proteins bound by most of the deregulated circRNAs include the neurodegeneration-associated FUS, TDP43, FMR1, and ATXN2. MicroRNAs predicted to be sequestered by most deregulated circRNAs have the Gene Ontology categories "protein modification" and "transcription factor activity" mostly enriched. CONCLUSIONS: This is the first study that identifies specific circRNAs that may serve as diagnostic biomarkers for PD. Because they are highly expressed in the brain and are derived from genes with essential brain functions, they may also hint on the PD pathways affected. © 2021 Biomedical Research Foundation, Academy of Athens. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , RNA, Circular , Gene Ontology , Humans , Leukocytes, Mononuclear , MicroRNAs/genetics , Parkinson Disease/genetics
5.
Ann Clin Transl Neurol ; 7(9): 1594-1607, 2020 09.
Article in English | MEDLINE | ID: mdl-32860338

ABSTRACT

OBJECTIVE: There is a pressing need to identify and validate, minimally invasive, molecular biomarkers that will complement current practices and increase the diagnostic accuracy in Parkinson's disease (PD). Brain-enriched miRNAs regulate all aspects of neuron development and function; importantly, they are secreted by neurons in amounts that can be readily detected in the plasma. Τhe aim of the present study was to validate a set of previously identified brain-enriched miRNAs with diagnostic potential for idiopathic PD and recognize the molecular pathways affected by these deregulated miRNAs. METHODS: RT-qPCR was performed in the plasma of 92 healthy controls and 108 idiopathic PD subjects. Statistical and in silico analyses were used to validate deregulated miRNAs and pathways in PD, respectively. RESULTS: miR-22-3p, miR-124-3p, miR-136-3p, miR-154-5p, and miR-323a-3p levels were found to be differentially expressed between healthy controls and PD patients. miR-330-5p, miR-433-3p, and miR-495-3p levels were overall higher in male subjects. Most of these miRNAs are clustered at Chr14q32 displaying CREB1, CEBPB, and MAZ transcription factor binding sites. Gene Ontology annotation analysis of deregulated miRNA targets revealed that "Protein modification," "Transcription factor activity," and "Cell death" terms were over-represented. Kyoto Encyclopedia of Genes and Genome analysis revealed that "Long-term depression," "TGF-beta signaling," and "FoxO signaling" pathways were significantly affected. INTERPRETATION: We validated a panel of brain-enriched miRNAs that can be used along with other measures for the detection of PD, revealed molecular pathways targeted by these deregulated miRNAs, and identified upstream transcription factors that may be directly implicated in PD pathogenesis.


Subject(s)
MicroRNAs/blood , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged , Parkinson Disease/blood , Parkinson Disease/physiopathology
6.
Front Cell Dev Biol ; 8: 372, 2020.
Article in English | MEDLINE | ID: mdl-32582692

ABSTRACT

The mitochondrial lifecycle comprises biogenesis, fusion and cristae remodeling, fission, and breakdown by the autophagosome. This cycle is essential for maintaining proper cellular function, and inhibition of any of these processes results in deterioration of bioenergetics and swift induction of apoptosis, particularly in energy-craving cells such as myocytes and neurons. Regulation of gene expression is a fundamental step in maintaining mitochondrial plasticity, mediated by (1) transcription factors that control the expression of mitochondrial mRNAs and (2) RNA-binding proteins (RBPs) that regulate mRNA splicing, stability, targeting to mitochondria, and translation. More recently, RBPs have been also shown to interact with proteins modulating the mitochondrial lifecycle. Importantly, misexpression or mutations in RBPs give rise to mitochondrial dysfunctions, and there is strong evidence to support that these mitochondrial impairments occur early in disease development, constituting leading causes of pathogenesis. This review presents key aspects of the molecular network of the disease-relevant RBPs, including transactive response DNA-binding protein 43 (TDP43), fused in sarcoma (FUS), T-cell intracellular antigen 1 (TIA1), TIA-related protein (TIAR), and pumilio (PUM) that drive mitochondrial dysfunction in the nervous system.

7.
Mov Disord ; 35(3): 457-467, 2020 03.
Article in English | MEDLINE | ID: mdl-31799764

ABSTRACT

BACKGROUND: A minimally invasive test for early detection and monitoring of Parkinson's disease (PD) is a highly unmet need for drug development and planning of patient care. Blood plasma represents an attractive source of biomarkers. MicroRNAs (miRNAs) are conserved noncoding RNA molecules that serve as posttranscriptional regulators of gene expression. As opposed to ubiquitously expressed miRNAs that control house-keeping processes, brain-enriched miRNAs regulate diverse aspects of neuron development and function. These include neuron-subtype specification, axonal growth, dendritic morphogenesis, and spine density. Backed by a large number of studies, we now know that the differential expression of neuron-enriched miRNAs leads to brain dysfunction. OBJECTIVES: The aim was to identify subsets of brain-enriched miRNAs with diagnostic potential for familial and idiopathic PD as well as specify the molecular pathways deregulated in PD. METHODS: Initially, brain-enriched miRNAs were selected based on literature review and validation studies in human tissues. Subsequently, real-time reverse transcription polymerase chain reaction was performed in the plasma of 100 healthy controls and 99 idiopathic and 53 genetic (26 alpha-synucleinA53T and 27 glucocerebrosidase) patients. Statistical and bioinformatics analyses were carried out to pinpoint the diagnostic biomarkers and deregulated pathways, respectively. RESULTS: An explicit molecular fingerprint for each of the 3 PD cohorts was generated. Although the idiopathic PD fingerprint was different from that of genetic PD, the molecular pathways deregulated converged between all PD subtypes. CONCLUSIONS: The study provides a group of brain-enriched miRNAs that may be used for the detection and differentiation of PD subtypes. It has also identified the molecular pathways deregulated in PD. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Circulating MicroRNA , MicroRNAs , Parkinson Disease , Brain/metabolism , Humans , MicroRNAs/genetics , Parkinson Disease/diagnosis , Parkinson Disease/genetics , alpha-Synuclein/metabolism
8.
Int J Mol Sci ; 19(8)2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30081499

ABSTRACT

The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.


Subject(s)
Neurodegenerative Diseases/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Animals , Humans , Models, Biological , Neurodegenerative Diseases/genetics , RNA-Binding Proteins/genetics , Ribonucleoproteins/genetics
9.
Stem Cells Dev ; 27(2): 65-84, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29267140

ABSTRACT

Mesenchymal stromal cells (MSCs) are multipotent stem cells with immunosuppressive and trophic support functions. While MSCs from different sources frequently display a similar appearance in culture, they often show differences in their surface marker and gene expression profiles. Although bone marrow is considered the "gold standard" tissue to isolate classical MSCs (BM-MSC), MSC-like cells are currently also derived from more easily accessible extra-embryonic tissues such as the umbilical cord. In this study, we defined the best way to isolate MSCs from the Wharton's jelly of the human umbilical cord (WJ-MSC) and assessed the mesenchymal and immunological phenotype of BM-MSC and WJ-MSC. Moreover, the gene expression profile of established WJ-MSC cultures was compared to two different bone marrow-derived stem cell populations (BM-MSC and multipotent adult progenitor cells or MAPC®). We observed that explant culturing of Wharton's jelly matrix is superior to collagenase tissue digestion for obtaining mesenchymal-like cells, with explant isolated cells displaying increased expansion potential. While being phenotypically similar to adult MSCs, WJ-MSC show a different gene expression profile. Gene ontology analysis revealed that genes associated with cell adhesion, proliferation, and immune system functioning are enriched in WJ-MSC. In vivo transplantation confirms their immune modulatory effect on T cells, similar to BM-MSC and MAPC. Furthermore, WJ-MSC intrinsically overexpress genes involved in neurotrophic support and their secretome induces neuronal maturation of SH-SY5Y neuroblastoma cells to a greater extent than BM-MSC. This signature makes WJ-MSC an attractive candidate for cell-based therapy in neurodegenerative and immune-mediated central nervous system disorders such as multiple sclerosis, Parkinson's disease, or amyotrophic lateral sclerosis.


Subject(s)
Bone Marrow Cells/immunology , Cell Line, Tumor/immunology , Cell Proliferation/physiology , Gene Expression Regulation/immunology , Gene Ontology , Immunomodulation , Bone Marrow Cells/cytology , Cell Adhesion/immunology , Cell Line, Tumor/cytology , Gene Expression Profiling , Humans , Mesenchymal Stem Cells
10.
Stem Cells Int ; 2017: 2353240, 2017.
Article in English | MEDLINE | ID: mdl-28785285

ABSTRACT

Macrophages and microglia are key effector cells in immune-mediated neuroinflammatory disorders. Driving myeloid cells towards an anti-inflammatory, tissue repair-promoting phenotype is considered a promising strategy to halt neuroinflammation and promote central nervous system (CNS) repair. In this study, we defined the impact of multipotent adult progenitor cells (MAPC), a stem cell population sharing common mesodermal origin with mesenchymal stem cells (MSCs), on the phenotype of macrophages and the reciprocal interactions between these two cell types. We show that MAPC suppress the secretion of tumor necrosis factor alpha (TNF-α) by inflammatory macrophages partially through a cyclooxygenase 2- (COX-2-) dependent mechanism. In turn, we demonstrate that inflammatory macrophages trigger the immunomodulatory properties of MAPC, including an increased expression of immunomodulatory mediators (e.g., inducible nitric oxide synthase (iNOS) and COX-2), chemokines, and chemokine receptors. Macrophage-primed MAPC secrete soluble factors that suppress TNF-α release by macrophages. Moreover, the MAPC secretome suppresses the antigen-specific proliferation of autoreactive T cells and the T cell stimulatory capacity of macrophages. Finally, MAPC increase their motility towards secreted factors of activated macrophages. Collectively, these in vitro findings reveal intimate reciprocal interactions between MAPC and inflammatory macrophages, which are of importance in the design of MAPC-based therapeutic strategies for neuroinflammatory disorders in which myeloid cells play a crucial role.

11.
Cereb Cortex ; 27(3): 1863-1877, 2017 03 01.
Article in English | MEDLINE | ID: mdl-26891984

ABSTRACT

The development of the cerebral cortex is a complex process that requires the generation, migration, and differentiation of neurons. Interfering with any of these steps can impair the establishment of connectivity and, hence, function of the adult brain. Neurotransmitter receptors have emerged as critical players to regulate these biological steps during brain maturation. Among them, α2 subunit-containing glycine receptors (GlyRs) regulate cortical neurogenesis and the present work demonstrates the long-term consequences of their genetic disruption on neuronal connectivity in the postnatal cerebral cortex. Our data indicate that somatosensory cortical neurons of Glra2 knockout mice (Glra2KO) have more dendritic branches with an overall increase in total spine number. These morphological defects correlate with a disruption of the excitation/inhibition balance, thereby increasing network excitability and enhancing susceptibility to epileptic seizures after pentylenetetrazol tail infusion. Taken together, our findings show that the loss of embryonic GlyRα2 ultimately impairs the formation of cortical circuits in the mature brain.


Subject(s)
Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Neurons/metabolism , Receptors, Glycine/metabolism , Animals , Cerebral Cortex/cytology , Disease Models, Animal , Immunohistochemistry , Male , Membrane Potentials/physiology , Mice, Inbred C57BL , Mice, Knockout , Neural Pathways/cytology , Neural Pathways/embryology , Neural Pathways/metabolism , Neurons/cytology , Patch-Clamp Techniques , Pentylenetetrazole , Receptors, Glycine/genetics , Seizures/metabolism , Tissue Culture Techniques
12.
Neurosci Lett ; 611: 33-9, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26590329

ABSTRACT

Postnatally isolated neural precursor cells (piNPCs) from mouse cerebral tissue have been studied in cell-based therapeutic approaches for Experimental Autoimmune Encephalomyelitis (EAE). Transplantation experiments in EAE rodents revealed that piNPCs manage to integrate into the host tissue and ameliorate clinical symptoms. When cultured in vitro, mouse cerebral piNPCs form neurospheres consisting of immature cells positive for polysialylated neural adhesion molecule (PSA-NCAM) that differentiate mainly towards glial cells, but also neurons. Herein, we have characterized piNPCs immunophenotype, with flow cytometry. NPCs were positive for CD24, CD44, and CD133 though negative for CD15, CD184 and CD49d. This immunophenotype, determined for the first time, among cells isolated from neonates might be useful for the identification of NPC population aiming at the development of transplantation protocols.


Subject(s)
Brain/cytology , Neural Stem Cells/immunology , Age Factors , Animals , Animals, Newborn , Antigens, Surface/metabolism , Biomarkers/metabolism , Cell Differentiation , Cells, Cultured , Immunophenotyping , Mice, Inbred C57BL , Multipotent Stem Cells/cytology , Multipotent Stem Cells/immunology , Neural Stem Cells/cytology
13.
Stem Cells Transl Med ; 4(12): 1450-62, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26511651

ABSTRACT

UNLABELLED: Neural precursor cell (NPC) transplantation has been proposed as a therapy for multiple sclerosis (MS) and other degenerative disorders of the central nervous system (CNS). NPCs are suggested to exert immune modulation when they are transplanted in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Herein, we explore whether the effect of NPC transplantation on the clinical course and the pathological features of EAE is combined with the modulation of chemokines levels expressed in the inflamed CNS. NPCs were isolated from brains of neonatal C57/Bl6 mice and were subcutaneously administered in female mice with myelin oligodendrocyte glycoprotein (MOG)-induced EAE. Clinical signs of the disease and transcript analysis of the CNS in the acute phase were performed. In addition, the presence of inflammatory components in the spinal cord was evaluated and ex vivo proliferation of lymphocytes was measured. NPC recipients exhibited ameliorated clinical outcome and less pronounced pathological features in their spinal cord. Downregulation of chemokine mRNA levels throughout the CNS was correlated with diminished Mac-3-, CD3-, and CD4-positive cells and reduced expression levels of antigen-presenting molecules in the spinal cord. Moreover, NPC transplantation resulted in lymphocyte-related, although not splenocyte-related, peripheral immunosuppression. We conclude that NPCs ameliorated EAE potentially by modulating the levels of chemokines expressed in the inflamed CNS, thus resulting in the impaired recruitment of immune cells. These findings further contribute to the better understanding of NPCs' immunomodulatory properties in neuroinflammatory disorders, and may lead to faster translation into potential clinical use. SIGNIFICANCE: Endogenous neural precursor cells of the central nervous system are able to migrate and differentiate toward mature cells to repair an injury. There is increasing evidence that autologous transplantation of these cells in experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis, may have a beneficial effect on the disease process. Several mechanisms have been proposed-among them, the potentiation of endogenous precursor cell differentiation of the central nervous system and the modulation of demyelinating and neurodegenerative immune-mediated processes. This article provides evidence of interference in immune signaling within the central nervous system as a potential mechanism underlying the immunomodulatory properties of transplanted neural precursor cells.


Subject(s)
Chemotaxis/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Neural Stem Cells/immunology , Neural Stem Cells/transplantation , Signal Transduction/immunology , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Mice , Multiple Sclerosis/pathology , Neural Stem Cells/pathology
14.
Stem Cell Res Ther ; 6: 176, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26377390

ABSTRACT

INTRODUCTION: Stem cell-based therapies are currently widely explored as a tool to treat neuroimmune diseases. Multipotent adult progenitor cells (MAPC) have been suggested to have strong immunomodulatory and neuroprotective properties in several experimental models. In this study, we investigate whether MAPC are of therapeutic interest for neuroinflammatory disorders such as multiple sclerosis by evaluating their capacities to modulate crucial pathological features and gain insights into the molecular pathways involved. METHODS: Rat MAPC were treated with combinations of pro-inflammatory cytokines that are closely associated with neuroinflammatory conditions, a process called licensing. mRNA expression of immunomodulatory molecules, chemokines and chemokine receptors was investigated. The migratory potential of licensed rat MAPC towards a broad spectrum of chemokines was tested in a Transwell assay. Furthermore, the effect of licensing on the ability of rat MAPC to attract and suppress the proliferation of encephalitogenic T cells was assessed. Finally, neuroprotective properties of rat MAPC were determined in the context of protection from oxidative stress of oligodendrocytes. Therefore, rat MAPC were incubated with conditioned medium of OLN93 cells subjected to sublethal doses of hydrogen peroxide and the gene expression of neurotrophic factors was assessed. RESULTS: After licensing, a wide variety of immunomodulatory molecules and chemokines, including inducible nitric oxide synthase and fractalkine, were upregulated by rat MAPC. The migratory properties of rat MAPC towards various chemokines were also altered. In addition, rat MAPC were found to inhibit antigen-specific T-cell proliferation and this suppressive effect was further enhanced after pro-inflammatory treatment. This phenomenon was partially mediated through inducible nitric oxide synthase or cyclooxygenase-2. Activated rat MAPC secreted factors that led to attraction of myelin-specific T cells. Finally, exposure of rat MAPC to an in vitro simulated neurodegenerative environment induced the upregulation of mRNA levels of vascular endothelial growth factor and ciliary neurotrophic factor. Factors secreted by rat MAPC in response to this environment partially protected OLN93 cells from hydrogen peroxide-induced cell death. CONCLUSIONS: Rat MAPC possess immune modulatory and neuroprotective properties which are enhanced in response to neuroinflammatory signals. These findings thereby warrant further research to evaluate MAPC transplantation as a therapeutic approach in diseases with an immunological and neurodegenerative component such as multiple sclerosis.


Subject(s)
Adult Stem Cells/drug effects , Cytokines/pharmacology , Pluripotent Stem Cells/drug effects , Adult Stem Cells/metabolism , Adult Stem Cells/physiology , Animals , Cell Line , Cell Movement , Cells, Cultured , Culture Media, Conditioned/pharmacology , Neuroprotective Agents/pharmacology , Oligodendroglia/metabolism , Oxidative Stress , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/physiology , Rats , Rats, Inbred Lew
15.
Cell Transplant ; 24(10): 2077-98, 2015.
Article in English | MEDLINE | ID: mdl-25310756

ABSTRACT

Umbilical cord matrix or Wharton's jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical benefit in degenerative disease models such as stroke, myocardial infarction, and Parkinson's disease. It remains unclear whether WJ-MSCs have therapeutic value for multiple sclerosis (MS), where autoimmune-mediated demyelination and neurodegeneration need to be halted. In this study, we investigated whether WJ-MSCs possess the required properties to effectively and durably reverse these pathological hallmarks and whether they survive in an inflammatory environment after transplantation. WJ-MSCs displayed a lowly immunogenic phenotype and showed intrinsic expression of neurotrophic factors and a variety of anti-inflammatory molecules. Furthermore, they dose-dependently suppressed proliferation of activated T cells using contact-dependent and paracrine mechanisms. Indoleamine 2,3-dioxygenase 1 was identified as one of the main effector molecules responsible for the observed T-cell suppression. The immune-modulatory phenotype of WJ-MSCs was further enhanced after proinflammatory cytokine treatment in vitro (licensing). In addition to their effect on adaptive immunity, WJ-MSCs interfered with dendritic cell differentiation and maturation, thus directly affecting antigen presentation and therefore T-cell priming. Systemically infused WJ-MSCs potently but transiently ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model for MS, when injected at onset or during chronic disease. This protective effect was paralleled with a reduction in autoantigen-induced T-cell proliferation, confirming their immunomodulatory activity in vivo. Surprisingly, in vitro licensed WJ-MSCs did not ameliorate EAE, indicative of a fast rejection as a result of enhanced immunogenicity. Collectively, we show that WJ-MSCs have trophic support properties and effectively modulate immune cell functioning both in vitro and in the EAE model, suggesting WJ-MSC may hold promise for MS therapy. Future research is needed to optimize survival of stem cells and enhance clinical durability.


Subject(s)
Cell Differentiation/physiology , Encephalomyelitis, Autoimmune, Experimental/therapy , Lymphocyte Activation/immunology , Mesenchymal Stem Cells/cytology , Wharton Jelly/cytology , Animals , Cell Differentiation/immunology , Cell Proliferation/physiology , Cytokines/metabolism , Humans , Rats , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Umbilical Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...