Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(12): e9580, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36523533

ABSTRACT

Madagascar is known for its high endemism and as many as 90% of this unique diversity are forest-dwellers. Unfortunately, the forest cover of Madagascar is decreasing at an alarming rate. This decrease can also affect aquatic insects, but our knowledge on aquatic insect diversity and distribution on Madagascar are limited. Although the eastern rainforests are considered the most diverse, the Central Highlands of Madagascar also harbors unique microendemic fauna but has been less studied. Here, we analyze the aquatic Adephaga beetle fauna of three remaining protected forests of the Central Highlands. Diversity, abundance, and uniqueness are compared between and within natural forests and surrounding grasslands. At least 15 undescribed species were found, highlighting the Central Highlands as an important area for endemism. The natural forests and the surrounding grasslands differed significantly in species assemblages. Interestingly, the three remaining forests differed in their assemblages with the geographically more distant Manjakatompo Ankaratra having the most unique fauna but also the highest altitude span. By contrast, the species composition was similar between the peripheral zones of each of the three remaining forests. The similarity of the fauna in the peripheral open habitats illustrates how some local forest endemics are replaced with widespread generalists in degraded habitats. Our study shows that the remaining forests of the Central Highlands of Madagascar are important refuges of unique fauna at high risk of extinction.

2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35165148

ABSTRACT

Sustainable land-system transformations are necessary to avert biodiversity and climate collapse. However, it remains unclear where entry points for transformations exist in complex land systems. Here, we conceptualize land systems along land-use trajectories, which allows us to identify and evaluate leverage points, i.e., entry points on the trajectory where targeted interventions have particular leverage to influence land-use decisions. We apply this framework in the biodiversity hotspot Madagascar. In the northeast, smallholder agriculture results in a land-use trajectory originating in old-growth forests and spanning from forest fragments to shifting hill rice cultivation and vanilla agroforests. Integrating interdisciplinary empirical data on seven taxa, five ecosystem services, and three measures of agricultural productivity, we assess trade-offs and cobenefits of land-use decisions at three leverage points along the trajectory. These trade-offs and cobenefits differ between leverage points: Two leverage points are situated at the conversion of old-growth forests and forest fragments to shifting cultivation and agroforestry, resulting in considerable trade-offs, especially between endemic biodiversity and agricultural productivity. Here, interventions enabling smallholders to conserve forests are necessary. This is urgent since ongoing forest loss threatens to eliminate these leverage points due to path dependency. The third leverage point allows for the restoration of land under shifting cultivation through vanilla agroforests and offers cobenefits between restoration goals and agricultural productivity. The co-occurring leverage points highlight that conservation and restoration are simultaneously necessary to avert collapse of multifunctional mosaic landscapes. Methodologically, the framework highlights the importance of considering path dependency along trajectories to achieve sustainable land-system transformations.


Subject(s)
Agriculture , Biodiversity , Conservation of Natural Resources/methods , Forestry , Models, Biological , Animals , Humans , Madagascar
3.
Exp Appl Acarol ; 60(4): 521-30, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23325416

ABSTRACT

Varroa destructor is a major pest in world beekeeping. It was first detected in Madagascar in 2010 on the endemic honeybee Apis mellifera unicolor. To evaluate V. destructor spread dynamics in Madagascar a global survey was conducted in 2011-2012. A total of 695 colonies from 30 districts were inspected for the presence of mites. 2 years after its introduction, nine districts were found infested. Varroa destructor spread was relatively slow compared to other countries with a maximum progression of 40 km per year, the five newly infested districts being located next to the first infested ones. The incidence of mite infestation was also investigated by monitoring 73 colonies from five apiaries during 1 year (2011-2012). Sixty percent of local colony mortality was recorded after 1 year of survey. Varroa destructor strain determination was done by partial sequencing of the cytochrome oxidase I gene of 13 phoretic mites sampled in five districts. A single V. destructor mitochondrial haplotype was detected, the Korean type, also present in the closest African countries. A global pathogen survey was also conducted on the colonies inspected for mite presence. The greater wax moth, Galleria mellonella has been found in all colonies all over the country. Two other pathogens and morphological abnormalities in workers, such as deformed wings, were found associated with only V. destructor presence. A prevention management plan must be implemented to delimit mite spread across the island.


Subject(s)
Bees/parasitology , Varroidae/physiology , Animals , DNA, Mitochondrial/chemistry , Environmental Monitoring , Host-Parasite Interactions , Incidence , Madagascar , Pest Control , Population Dynamics , Sequence Analysis, DNA , Varroidae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...