Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(8): e0183274, 2017.
Article in English | MEDLINE | ID: mdl-28817664

ABSTRACT

Engineered nanomaterials can alter the structure and/or function of biological membranes and membrane proteins but the underlying mechanisms remain unclear. We addressed this using a Langmuir phospholipid monolayer containing an active transmembrane protein, glucose-6-phosphatase (G6Pase). Gold nanoparticles (nAu) with varying ligand shell composition and hydrophobicity were synthesized, and their partitioning in the membrane and effects on protein activity characterized. nAu incorporation did not alter the macroscopic properties of the membrane. Atomic force microscopy showed that when co-spread with other components prior to membrane compression, nAu preferentially interacted with G6Pase and each other in a functional group-dependent manner. Under these conditions, all nAu formulations reduced G6Pase aggregation in the membrane, enhancing catalytic activity 5-6 fold. When injected into the subphase beneath pre-compressed monolayers, nAu did not affect G6Pase activity over 60 minutes, implying they were unable to interact with the protein under these conditions. A small but significant quenching of tryptophan fluorescence showed that nAu interacted with G6Pase in aqueous suspension. nAu also significantly reduced the hydrodynamic diameter of G6Pase in aqueous suspension and promoted catalytic activity, likely via a similar mechanism to that observed in co-spread monolayers. Overall, our results show that nAu can incorporate into membranes and associate preferentially with membrane proteins under certain conditions and that partitioning is dependent upon ligand shell chemistry and composition. Once incorporated, nAu can alter the distribution of membrane proteins and indirectly affect their function by improving active site accessibility, or potentially by changing their native structure and distribution in the membrane.


Subject(s)
Glucose-6-Phosphatase/metabolism , Gold/chemistry , Membrane Lipids/metabolism , Metal Nanoparticles , Phospholipids/metabolism , Microscopy, Atomic Force
2.
ACS Omega ; 2(8): 4411-4416, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-31457732

ABSTRACT

In this study, the effects of ligand phase, morphology, and temperature on the elastic modulus of free-standing alkanethiol-capped gold nanoparticle membranes are reported. Langmuir films of 2.5 nm gold nanoparticles capped with tetradecanethiol were prepared at temperatures above and below the phase transition temperature (T m) of the ligand shell and transferred to holey carbon grids (containing 1.2 µm holes) to form free-standing membranes. Force-indentation measurements are used to measure the elastic modulus of the membranes using an atomic force microscope in the temperature range 10-40 °C. These films are compared with membranes of dodecanethiol-capped gold nanoparticles, which do not undergo a ligand order-disorder transition in the temperature range investigated. The ligand phase effect is observed in the tetradecanethiol-capped gold nanoparticle films, where an abrupt change in the elastic modulus is seen near T m. The temperature (relative to T m) during the fabrication of the films is determined to play an important role in tuning the mechanical strength of these films in this temperature range by both changing the nature of the interparticle interactions and by affecting microscale film morphology.

SELECTION OF CITATIONS
SEARCH DETAIL
...