Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nutrients ; 15(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299546

ABSTRACT

Ultra-processed foods (UPF) are energy-dense, nutritionally unbalanced products, low in fiber but high in saturated fat, salt, and sugar. Recently, UPF consumption has increased likewise the incidence of obesity and cardiometabolic diseases. To highlight a possible relationship, we conducted a systematic review of prospective studies from PubMed and Web of Science investigating the association between UPF consumption and the incidence of obesity and cardiometabolic risk factors. Seventeen studies were selected. Eight evaluated the incidence of general and abdominal obesity, one the incidence of impaired fasting blood glucose, four the incidence of diabetes, two the incidence of dyslipidemia, and only one the incidence of metabolic syndrome. Studies' quality was assessed according to the Critical Appraisal Checklist for cohort studies proposed by the Joanna Briggs Institute. Substantial agreement emerged among the studies in defining UPF consumption as being associated with the incident risk of general and abdominal obesity. More limited was the evidence on cardiometabolic risk. Nevertheless, most studies reported that UPF consumption as being associated with an increased risk of hypertension, diabetes, and dyslipidemia. In conclusion, evidence supports the existence of a relationship between UPF consumption and the incidence of obesity and cardiometabolic risk. However, further longitudinal studies considering diet quality and changes over time are needed.


Subject(s)
Food, Processed , Hypertension , Adult , Humans , Prospective Studies , Obesity, Abdominal/complications , Cardiometabolic Risk Factors , Incidence , Food Handling , Fast Foods/adverse effects , Obesity/epidemiology , Obesity/etiology , Diet/adverse effects , Hypertension/complications
2.
J Hum Nutr Diet ; 36(4): 1316-1326, 2023 08.
Article in English | MEDLINE | ID: mdl-36991579

ABSTRACT

BACKGROUND: Adrenoleukodystrophy (ALD) is a rare X-linked metabolic disorder that causes the accumulation of very-long-chain fatty acids (VLCFAs) (C26:0) and the subsequent variety of clinical and neurological symptoms. Little is known about nutritional status and dietary habits of children affected by ALD, and so the present study aimed to assess nutritional status and food intake in children with ALD, also exploring the relationship between food intake and the consumption of disease-specific dietary supplements to reduce blood C26:0 concentrations and increase monounsaturated fatty acids (C26:1). METHODS: All patients underwent a clinical and neurological evaluation and a comprehensive nutritional assessment. The association of VLCFA concentrations with dietary lipids was assessed. RESULTS: Nine boys (11.49 ± 3.61 years) were enrolled in a cross-sectional study. All patients were normal weight, with normal resting energy expenditure. Only six of nine patients followed the low-fat diet and dietary supplements. An inverse association was found between the food intake of polyunsaturated lipids and C26:0; conversely, the C26:0 was positively associated with the dietary saturated lipids. When consumed, dietary supplement consumption correlated positively with C26:1 (ρ = 0.917, p = 0.029) and no correlation was found with C26:0 (ρ = 0.410, p = 0,493). CONCLUSIONS: No children were found to be malnourished or overweight or obese; however, half of the children reported excessive body fat, probably as a result of the pharmacotherapies. A low-fat diet could be adjuvant in the management of the accumulation of VLCFAs, but poor dietary compliance to disease-specific nutritional guidelines appears to be a major problem of this condition and underlines the need for a structured and personalised nutritional management in ALD disease.


Subject(s)
Adrenoleukodystrophy , Male , Humans , Adrenoleukodystrophy/complications , Adrenoleukodystrophy/metabolism , Nutritional Status , Cross-Sectional Studies , Dietary Fats , Fatty Acids
3.
Biol Sex Differ ; 13(1): 25, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35659737

ABSTRACT

BACKGROUND: Sex-based differences in appetite ratings have been observed previously. Ghrelin is the only known orexigenic peptide hormone. Sex differences in postprandial ghrelin responses may underlie different perceptions of hunger and satiety, but results are conflicting. We conducted a parallel study to evaluate sex differences in postprandial appetite ratings and ghrelin concentration after administration of a physiological meal among students of University of Milan. METHODS: Twenty-four healthy, normal weight volunteers (12 men and 12 women) aged 18-35 years were recruited. A balanced mixed meal meeting 40% of the estimated daily energy expenditure and providing 60% of calories from carbohydrates, 25% from lipids and 15% from protein was administrated. Sex differences in appetite ratings (satiety, hunger, fullness and desire to eat) and magnitude of ghrelin suppression during postprandial period (up to 180 min) were determined. RESULTS: In the fasting state, men and women did not differ in appetite ratings and ghrelin concentrations. After feeding, women tended to reach peak of satiety earlier than men, who in turn reached the nadir of hunger later than women (median: 30 min, interquartile range (IQR): 1; 120 vs. 1 min, IQR 1; 1, p = 0.007). Ghrelin suppression was greater in women (median decremental AUC - 95, IQR - 122; - 66) than in men (median decremental AUC - 47, IQR - 87; - 31, p = 0.041). CONCLUSIONS: These findings suggest sex differences in the postprandial appetite regulation that might be important for nutritional strategy to prevent and treat obesity and eating disorders.


Subject(s)
Appetite , Ghrelin , Female , Glucagon-Like Peptide 1 , Humans , Hunger , Male , Postprandial Period , Young Adult
4.
Orphanet J Rare Dis ; 16(1): 375, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34481516

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by muscle atrophy and weakness. SMA type 1 (SMA1) is the most severe form: affected infants are unable to sit unaided; SMA type 2 (SMA2) children can sit, but are not able to walk independently. The Standards of Care has improved quality of life and the increasing availability of disease-modifying treatments is progressively changing the natural history; so, the clinical assessment of nutritional status has become even more crucial. Aims of this multicenter study were to present the growth pattern of treatment-naïve SMA1 and SMA2, and to compare it with the general growth standards. RESULTS: Body Weight (BW, kg) and Supine Length (SL, cm) were collected using a published standardized procedure. SMA-specific growth percentiles curves were developed and compared to the WHO reference data. We recruited 133 SMA1 and 82 SMA2 (48.8% females). Mean ages were 0.6 (0.4-1.6) and 4.1 (2.1-6.7) years, respectively. We present here a set of disease-specific percentiles curves of BW, SL, and BMI-for-age for girls and boys with SMA1 and SMA2. These curves show that BW is significantly lower in SMA than healthy peers, while SL is more variable. BMI is also typically lower in both sexes and at all ages. CONCLUSIONS: These data on treatment-naïve patients point toward a better understanding of growth in SMA and could be useful to improve the clinical management and to assess the efficacy of the available and forthcoming therapies not only on motor function, but also on growth.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Body Weight , Child , Female , Humans , Infant , Male , Nutritional Status , Quality of Life
5.
Clin Nutr ; 40(4): 1578-1587, 2021 04.
Article in English | MEDLINE | ID: mdl-33744602

ABSTRACT

BACKGROUND: Body composition assessment is paramount for spinal muscular atrophy type I (SMA I) patients, as weight and BMI have proven to be misleading for these patients. Despite its importance, no disease-specific field method is currently available, and the assessment of body composition of SMA I patients requires reference methods available only in specialized settings. OBJECTIVE: To develop predictive fat mass equations for SMA I children based on simple measurements, and compare existing equations to the new disease-specific equations. DESIGN: Demographic, clinical and anthropometric data were examined as potential predictors of the best candidate response variable and non-linear relations were taken into account by transforming continuous predictors with restricted cubic splines. Alternative models were fitted including all the dimensions revealed by cluster analysis of the predictors. The best models were then internally validated, quantifying optimism of the obtained performance measures. The contribution of nusinersen treatment to the unexplained variability of the final models was also tested. RESULTS: A total of 153 SMA I patients were included in the study, as part of a longitudinal observational study in SMA children conducted at the International Center for the Assessment of Nutritional Status (ICANS), University of Milan. The sample equally represented both sexes (56% females) and a wide age range (from 3 months to 12 years, median 1.2 years). Four alternative models performed equally in predicting fat mass fraction (fat mass/body weight). The most convenient was selected and further presented. The selected model uses as predictors sex, age, calf circumference and the sum of triceps, suprailiac and calf skinfold thicknesses. The model showed high predictive ability (optimism corrected coefficient of determination, R2 = 0.72) and internal validation indicated little optimism both in performance measures and model calibration. The addition of nusinersen as a predictor variable did not improve the prediction. The disease-specific equation was more accurate than the available fat mass equations. CONCLUSIONS: The developed prediction model allows the assessment of body composition in SMA I children with simple and widely available measures and with reasonable accuracy.


Subject(s)
Adipose Tissue , Anthropometry/methods , Body Composition , Nutrition Assessment , Spinal Muscular Atrophies of Childhood/physiopathology , Child , Child, Preschool , Female , Humans , Infant , Longitudinal Studies , Male , Models, Statistical , Nutritional Status , Predictive Value of Tests , Reference Values , Skinfold Thickness
6.
Nutr Cancer ; 73(6): 1004-1014, 2021.
Article in English | MEDLINE | ID: mdl-33689522

ABSTRACT

The use of the ketogenic diet (KD) as an adjuvant therapy in high-grade gliomas (HGG) is supported by preclinical studies, but clinical data on its effects on metabolism are currently lacking. In this study, we describe the effects of a KD on glucose profile, ketonemia, energy metabolism, and nutritional status, in adults affected by HGG. This was a single-arm prospective study. An isocaloric 3:1 KD was administered for 1 mo. Glucose profile was assessed by using fasting glycemia, insulin, and glycated hemoglobin. To evaluate ketonemia changes, a hand-held ketone meter was used from home. Energy metabolism was assessed by indirect calorimetry. Nutritional status was evaluated through changes in body composition and in lipid and hepatic profile. No changes in fasting glycemia were observed; however, insulinemia dropped to half of baseline levels. The KD shifted the metabolism, rising ketonemia and decreasing glucose oxidation rate to a quarter of the initial values. Moreover, the KD was generally safe. One-month intervention with the KD was able to act upon key metabolic substrates potentially involved in HGG metabolism. The lack of a significant reduction in fasting glycemia should be investigated in future studies.


Subject(s)
Diet, Ketogenic , Glioma , Adult , Glucose , Humans , Insulin , Prospective Studies
7.
Int J Mol Sci ; 21(11)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521608

ABSTRACT

Body shape index (ABSI) and triponderal mass index (TMI) have been recently associated with cardiovascular risk in adults. A cross-sectional study was conducted to evaluate the relationship between different anthropometric adiposity indexes and metabolic syndrome (MetS) in Caucasian obese children and adolescents. Consecutive obese children aged ≥7 years have been enrolled. Anthropometric parameters, body composition (by bioelectrical impedance), and systolic and diastolic blood pressure have been measured. Fasting blood samples have been analyzed for lipids, insulin, glucose. A multivariate logistic regression analyses, with body mass index z-score, waist to height ratio, ABSI z-score, TMI, conicity index as predictors for MetS (IDEFICS and IDF criteria according to age) has been performed. Four hundred and three (179 boys and 224 girls) obese children, aged 7-20 years, have been evaluated. When we explored the joint contribution of each anthropometric and adiposity index of interest and BMIz on the risk of MetS, we found that the inclusion of ABSIz improved the prediction of MetS compared to BMIz alone. ABSI-BMI can be a useful index for evaluating the relative contribution of central obesity to cardiometabolic risk in clinical management of obese children and adolescents.


Subject(s)
Adiposity , Metabolic Syndrome/epidemiology , Metabolic Syndrome/etiology , Pediatric Obesity/complications , Pediatric Obesity/epidemiology , Adolescent , Body Composition , Body Mass Index , Body Weights and Measures , Child , Disease Susceptibility , Female , Humans , Male , Pediatric Obesity/diagnosis , Pediatric Obesity/metabolism , Young Adult
8.
Am J Clin Nutr ; 111(5): 983-996, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32145012

ABSTRACT

BACKGROUND: Knowledge on resting energy expenditure (REE) in spinal muscular atrophy type I (SMAI) is still limited. The lack of a population-specific REE equation has led to poor nutritional support and impairment of nutritional status. OBJECTIVE: To identify the best predictors of measured REE (mREE) among simple bedside parameters, to include these predictors in population-specific equations, and to compare such models with the common predictive equations. METHODS: Demographic, clinical, anthropometric, and treatment variables were examined as potential predictors of mREE by indirect calorimetry (IC) in 122 SMAI children consecutively enrolled in an ongoing longitudinal observational study. Parameters predicting REE were identified, and prespecified linear regression models adjusted for nusinersen treatment (discrete: 0 = no; 1 = yes) were used to develop predictive equations, separately in spontaneously breathing and mechanically ventilated patients. RESULTS: In naïve patients, the median (25th, 75th percentile) mREE was 480 (412, 575) compared with 394 (281, 554) kcal/d in spontaneously breathing and mechanically ventilated patients, respectively (P = 0.009).In nusinersen-treated patients, the median (25th, 75th percentile) mREE was 609 (592, 702) compared with 639 (479, 723) kcal/d in spontaneously breathing and mechanically ventilated patients, respectively (P = 0.949).Both in spontaneously breathing and mechanically ventilated patients, the best prediction of REE was obtained from 3 models, all using as predictors: 1 body size related measurement and nusinersen treatment status. Nusinersen treatment was correlated with higher REE both in spontaneously breathing and mechanically ventilated patients. The population-specific equations showed a lower interindividual variability of the bias than the other equation tested, however, they showed a high root mean squared error. CONCLUSIONS: We demonstrated that ventilatory status, nusinersen treatment, demographic, and anthropometric characteristics determine energy requirements in SMAI. Our SMAI-specific equations include variables available in clinical practice and were generally more accurate than previously published equations. At the individual level, however, IC is strongly recommended for assessing energy requirements. Further research is needed to externally validate these predictive equations.


Subject(s)
Spinal Muscular Atrophies of Childhood/metabolism , Basal Metabolism , Calorimetry, Indirect , Child , Child, Preschool , Energy Metabolism , Female , Humans , Infant , Longitudinal Studies , Male , Nutritional Requirements , Nutritional Status , Oligonucleotides/administration & dosage , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/therapy , Ventilators, Mechanical
9.
Nutrients ; 11(8)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349661

ABSTRACT

The classical ketogenic diet (cKD) is an isocaloric, high fat, very low-carbohydrate diet that induces ketosis, strongly influencing leptin and ghrelin regulation. However, not enough is known about the impact of a long-term cKD. This study evaluated the effects of a 12-month cKD on ghrelin and leptin concentrations in children, adolescents and adults affected by the GLUT1-Deficiency Syndrome or drug resistant epilepsy (DRE). We also investigated the relationship between the nutritional status, body composition and ghrelin and leptin variations. We carried out a longitudinal study on 30 patients: Twenty-five children and adolescents (15 females, 8 ± 4 years), and five adults (two females, 34 ± 16 years). After 12-monoths cKD, there were no significant changes in ghrelin and leptin, or in the nutritional status, body fat, glucose and lipid profiles. However, a slight height z-score reduction (from -0.603 ± 1.178 to -0.953 ± 1.354, p ≤ 0.001) and a drop in fasting insulin occurred. We found no correlations between ghrelin changes and nutritional status and body composition, whereas leptin changes correlated positively with variations in the weight z-score and body fat (ρ = 0.4534, p = 0.0341; ρ = 0.5901, p = 0.0135; respectively). These results suggest that a long-term cKD does not change ghrelin and leptin concentrations independently of age and neurological condition.


Subject(s)
Carbohydrate Metabolism, Inborn Errors/diet therapy , Diet, Ketogenic , Drug Resistant Epilepsy/diet therapy , Ghrelin/blood , Leptin/blood , Monosaccharide Transport Proteins/deficiency , Adolescent , Adult , Biomarkers/blood , Carbohydrate Metabolism, Inborn Errors/blood , Carbohydrate Metabolism, Inborn Errors/diagnosis , Carbohydrate Metabolism, Inborn Errors/physiopathology , Child , Child, Preschool , Drug Resistant Epilepsy/blood , Drug Resistant Epilepsy/diagnosis , Drug Resistant Epilepsy/physiopathology , Female , Humans , Italy , Longitudinal Studies , Male , Middle Aged , Monosaccharide Transport Proteins/blood , Prospective Studies , Time Factors , Treatment Outcome , Young Adult
10.
Nutrients ; 11(5)2019 May 17.
Article in English | MEDLINE | ID: mdl-31108981

ABSTRACT

The ketogenic diet (KD) is the first line intervention for glucose transporter 1 deficiency syndrome and pyruvate dehydrogenase deficiency, and is recommended for refractory epilepsy. It is a normo-caloric, high-fat, adequate-protein, and low-carbohydrate diet aimed at switching the brain metabolism from glucose dependence to the utilization of ketone bodies. Several variants of KD are currently available. Depending on the variant, KDs require the almost total exclusion, or a limited consumption of carbohydrates. Thus, there is total avoidance, or a limited consumption of cereal-based foods, and a reduction in fruit and vegetable intake. KDs, especially the more restrictive variants, are characterized by low variability, palatability, and tolerability, as well as by side-effects, like gastrointestinal disorders, nephrolithiasis, growth retardation, hyperlipidemia, and mineral and vitamin deficiency. In recent years, in an effort to improve the quality of life of patients on KDs, food companies have started to develop, and commercialize, several food products specific for such patients. This review summarizes the foods themselves, including sweeteners, and food products currently available for the ketogenic dietary treatment of neurological diseases. It describes the nutritional characteristics and gives indications for the use of the different products, taking into account their metabolic and health effects.


Subject(s)
Commerce , Diet, Ketogenic , Food/classification , Nervous System Diseases/diet therapy , Humans , Italy
SELECTION OF CITATIONS
SEARCH DETAIL
...