Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Transl Neurosci ; 10: 1-9, 2019.
Article in English | MEDLINE | ID: mdl-30984416

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is an inflammatory disease of the CNS, characterized by demyelination, focal inflammatory infiltrates and axonal damage. Oxidative stress has been linked to MS pathology. Previous studies have suggested the involvement of NADPH oxidase 2 (Nox2), an enzyme that catalyzes the reduction of oxygen to produce reactive oxygen species, in the MS pathogenesis. The mechanisms of Nox2 activation on MS are unknown. The purpose of this study was to investigate the effect of Nox2 deletion on experimental autoimmune encephalomyelitis (EAE) onset and severity, on astrocyte activation as well as on pro-inflammatory and anti-inflammatory cytokine induction in striatum and motor cortex. METHODOLOGY: Subcutaneous injection of MOG35-55 emulsified with complete Freund's adjuvant was used to evaluate the effect of Nox2 depletion on EAE-induced encephalopathy. Striatum and motor cortices were isolated and evaluated by immunoblotting and RT-PCR. RESULTS: Nox2 deletion resulted in clinical improvement of the disease and prevented astrocyte activation following EAE induction. Nox2 deletion prevented EAE-induced induction of pro-inflammatory cytokines and stimulated the expression of the anti-inflammatory cytokines IL-4 and IL-10. CONCLUSIONS: Our data suggest that Nox2 is involved on the EAE pathogenesis. IL-4 and IL-10 are likely to be involved on the protective mechanism observed following Nox2 deletion.

2.
Toxicon ; 58(2): 202-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21684302

ABSTRACT

Brain areas expressing c-fos messenger RNA were mapped by quantitative in situ hybridization after 1-2 h of intoxication with 10 µg/kg Tx2-6, a toxin obtained from the venom of the spider Phoneutria nigriventer. Relative to saline-treated controls, brains from toxin-treated animals showed pronounced c-fos activation in many brain areas, including the supraoptic nucleus, the paraventricular nucleus of the hypothalamus, the motor nucleus of the vagus, area postrema, paraventricular and paratenial nuclei of the thalamus, locus coeruleus, central amydaloid nucleus and the bed nucleus of the stria terminalis. The paraventricular hypothalamus and the bed nucleus of the stria terminalis have been implicated in erectile function in other studies. A possible role for central NO is considered. Acute stress also activates many brain areas activated by Tx2-6 as well as with NOstimulated Fos transcription. Brain areas that appear to be selectively activated by Tx2-6, include the paratenial and paraventricular thalamic nuclei, the bed nucleus of the stria terminalis and the area postrema and the dorsal motor n. of vagus in the medulla. However, direct injections of different doses of the toxin into the paraventricular hypothalamic n. failed to induce penile erection, arguing against CNS involvement in this particular effect.


Subject(s)
Brain/drug effects , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurotoxins/toxicity , Penile Erection/drug effects , Peptides/toxicity , Proto-Oncogene Proteins c-fos/metabolism , Spider Venoms/toxicity , Animals , Arthropod Proteins/administration & dosage , Arthropod Proteins/chemistry , Arthropod Proteins/toxicity , Biomarkers/metabolism , Brain/metabolism , Brain/pathology , Central Nervous System Agents/administration & dosage , Central Nervous System Agents/toxicity , Dose-Response Relationship, Drug , In Situ Hybridization , Injections, Intraventricular , Male , Mice , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/pathology , Neurotoxins/administration & dosage , Neurotoxins/chemistry , Organ Specificity , Peptides/administration & dosage , Peptides/chemistry , Proto-Oncogene Proteins c-fos/agonists , Proto-Oncogene Proteins c-fos/genetics , RNA, Messenger/metabolism , Sodium Channel Agonists , Spider Bites/metabolism , Spider Bites/pathology , Spider Venoms/administration & dosage , Spider Venoms/chemistry
3.
Toxicon ; 58(2): 202-208, 2011.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1068281

ABSTRACT

Brain areas expressing c-fos messenger RNA were mapped by quantitative in situhybridization after 1–2 h of intoxication with 10 mg/kg Tx2-6, a toxin obtained from the venom of the spider Phoneutria nigriventer. Relative to saline-treated controls, brains from toxin-treated animals showed pronounced c-fos activation in many brain areas, includingthe supraoptic nucleus, the paraventricular nucleus of the hypothalamus, the motor nucleus of the vagus, area postrema, paraventricular and paratenial nuclei of the thalamus,locus coeruleus, central amydaloid nucleus and the bed nucleus of the stria terminalis. The paraventricular hypothalamus and the bed nucleus of the stria terminalis have been implicated in erectile function in other studies. A possible role for central NO is considered. Acute stress also activates many brain areas activated by Tx2-6 as well as with NO stimulated Fos transcription. Brain areas that appear to be selectively activated by Tx2-6, include the paratenial and paraventricular thalamic nuclei, the bed nucleus of the stria terminalis and the area postrema and the dorsal motor n. of vagus in the medulla. However, direct injections of different doses of the toxin into the paraventricular hypothalamicn. failed to induce penile erection, arguing against CNS involvement in thisparticular effect.


Subject(s)
Mice , Spiders/anatomy & histology , Penile Erection , Neurotoxins/administration & dosage , Neurotoxins/analysis , Neurotoxins/poisoning , Neurotoxins/toxicity , Sodium Channels , Cerebrum/anatomy & histology , Cerebrum/physiopathology , Priapism/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...