Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Plant Biol ; 73: 102336, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36716513

ABSTRACT

The rhizosphere is the soil-plant interface colonized by bacterial and fungal species that exert growth-promoting and adaptive benefits. The plant-bacteria relationships rely upon the perception of volatile organic compounds (VOCs), canonical phytohormones such as auxins and cytokinins, and the bacterial quorum sensing-related N-acyl-L-homoserine lactones and cyclodipeptides. On the other hand, plant-beneficial Trichoderma fungi emit highly active VOCs, including 6-pentyl-2H-pyran-2-one (6-PP), and ß-caryophyllene, which contribute to plant morphogenesis, but also into how these microbes spread over roots or live as endophytes. Here, we describe recent findings concerning how compounds from beneficial bacteria and fungi affect root architecture and advance into the signaling events that mediate microbial recognition.


Subject(s)
Rhizosphere , Volatile Organic Compounds , Plant Development , Plant Growth Regulators , Bacteria , Plants/microbiology , Fungi , Plant Roots , Soil Microbiology
2.
Environ Pollut ; 312: 120084, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36057328

ABSTRACT

Research over the last three decades showed that chromium, particularly the oxyanion chromate Cr(VI) behaves as a toxic environmental pollutant that strongly damages plants due to oxidative stress, disruption of nutrient uptake, photosynthesis and metabolism, and ultimately, represses growth and development. However, mild Cr(VI) concentrations promote growth, induce adventitious root formation, reinforce the root cap, and produce twin roots from single root meristems under conditions that compromise cell viability, indicating its important role as a driver for root organogenesis. In recent years, considerable advance has been made towards deciphering the molecular mechanisms for root sensing of chromate, including the identification of regulatory proteins such as SOLITARY ROOT and MEDIATOR 18 that orchestrate the multilevel dynamics of the oxyanion. Cr(VI) decreases the expression of several glutamate receptors, whereas amino acids such as glutamate, cysteine and proline confer protection to plants from hexavalent chromium stress. The crosstalk between plant hormones, including auxin, ethylene, and jasmonic acid enables tissues to balance growth and defense under Cr(VI)-induced oxidative damage, which may be useful to better adapt crops to biotic and abiotic challenges. The highly contrasting responses of plants manifested at the transcriptional and translational levels depend on the concentration of chromate in the media, and fit well with the concept of hormesis, an adaptive mechanism that primes plants for resistance to environmental challenges, toxins or pollutants. Here, we review the contrasting facets of Cr(VI) in plants including the cellular, hormonal and molecular aspects that mechanistically separate its toxic effects from biostimulant outputs.


Subject(s)
Chromates , Environmental Pollutants , Chromates/metabolism , Chromium/chemistry , Cysteine/metabolism , Cysteine/pharmacology , Environmental Pollutants/metabolism , Ethylenes/metabolism , Ethylenes/pharmacology , Glutamates/metabolism , Glutamates/pharmacology , Hormesis , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plants/metabolism , Proline/metabolism , Proline/pharmacology
3.
Plant Sci ; 323: 111396, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35878696

ABSTRACT

Serotonin (5-hydroxytryptamine) acts as a neurotransmitter in mammals and is widely distributed in the plant kingdom, where it influences root growth and defense. Mitogen-Activated Protein Kinases (MAPKs) and MAPK phosphatases (MKPs) play critical functions in decoding hormonal signalling, but their possible roles in mediating serotonin responses await investigation. In this report, we unveiled positive roles for the MITOGEN-ACTIVATED PROTEIN KINASE PHOSPHATASE1 (MKP1) in the inhibition of the primary root growth, cell division, meristem structure, and differentiation events in Arabidopsis seedlings. mkp1 mutants were less sensitive to jasmonic acid applications that halted primary root growth in wild-type (WT) plants, and consistently, the neurotransmitter activated the expression of the JASMONATE ZIM-domain (JAZ) proteins JAZ1 and JAZ10, two critical proteins orchestrating jasmonic acid signalling. This effect correlated with exacerbated production of endogenous reactive oxygen species (ROS) in the WT, a process constitutively manifested in mkp1 mutants. These data help to clarify the relationship between serotonin and growth/defense trade-offs, and reveal the importance of the MAPK pathway in root development through ROS production.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinases/metabolism , Oxylipins , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/pharmacology , Reactive Oxygen Species/metabolism , Serotonin/metabolism , Serotonin/pharmacology
4.
Plant Mol Biol ; 108(1-2): 77-91, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34855067

ABSTRACT

KEY MESSAGE: The role of the root cap in the plant response to phosphate deprivation has been scarcely investigated. Here we describe early structural, physiological and molecular changes prior to the determinate growth program of the primary roots under low Pi and unveil a critical function of the transcription factor SOMBRERO in low Pi sensing. Mineral nutrient distribution in the soil is uneven and roots efficiently adapt to improve uptake and assimilation of sparingly available resources. Phosphate (Pi) accumulates in the upper layers and thus short and branched root systems proliferate to better exploit organic and inorganic Pi patches. Here we report an early adaptive response of the Arabidopsis primary root that precedes the entrance of the meristem into the determinate developmental program that is a hallmark of the low Pi sensing mechanism. In wild-type seedlings transferred to low Pi medium, the quiescent center domain in primary root tips increases as an early response, as revealed by WOX5:GFP expression and this correlates with a thicker root tip with extra root cap cell layers. The halted primary root growth in WT seedlings could be reversed upon transfer to medium supplemented with 250 µM Pi. Mutant and gene expression analysis indicates that auxin signaling negatively affects the cellular re-specification at the root tip and enabled identification of the transcription factor SOMBRERO as a critical element that orchestrates both the formation of extra root cap layers and primary root growth under Pi scarcity. Moreover, we provide evidence that low Pi-induced root thickening or the loss-of-function of SOMBRERO is associated with expression of phosphate transporters at the root tip. Our data uncover a developmental window where the root tip senses deprivation of a critical macronutrient to improve adaptation and surveillance.


Subject(s)
Arabidopsis Proteins/physiology , Indoleacetic Acids/metabolism , Phosphates/deficiency , Plant Growth Regulators/physiology , Plant Root Cap/growth & development , Transcription Factors/physiology , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/physiology , Gene Expression Regulation, Plant , Meristem/growth & development , Meristem/metabolism , Meristem/physiology , Plant Root Cap/cytology , Plant Root Cap/metabolism , Signal Transduction
5.
Plant Sci ; 302: 110717, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33288023

ABSTRACT

Amino acids serve as structural monomers for protein synthesis and are considered important biostimulants for plants. In this report, the effects of all 20-L amino acids in Arabidopsis primary root growth were evaluated. 15 amino acids inhibited growth, being l-leucine (l-Leu), l-lysine (l-Lys), l-tryptophan (l-Trp), and l-glutamate (l-Glu) the most active, which repressed both cell division and elongation in primary roots. Comparisons of DR5:GFP expression and growth of WT Arabidopsis seedlings and several auxin response mutants including slr, axr1 and axr2 single mutants, arf7/arf19 double mutant and tir1/afb2/afb3 triple mutant, treated with inhibitory concentrations of l-Glu, l-Leu, l-Lys and l-Trp revealed gene-dependent, specific changes in auxin response. In addition, l- isomers of Glu, Leu and Lys, but not l-Trp diminished the GFP fluorescence of pPIN1::PIN1:GFP, pPIN2::PIN2:GFP, pPIN3::PIN3:GFP and pPIN7::PIN7:GFP constructs in root tips. MPK6 activity in roots was enhanced by amino acid treatment, being greater in response to l-Trp while mpk6 mutants supported cell division and elongation at high doses of l-Glu, l-Leu, l-Lys and l-Trp. We conclude that independently of their auxin modulating properties, amino acids signals converge in MPK6 to alter the Arabidopsis primary root growth.


Subject(s)
Amino Acids/physiology , Arabidopsis Proteins/physiology , Arabidopsis/growth & development , Indoleacetic Acids/metabolism , Mitogen-Activated Protein Kinases/physiology , Plant Growth Regulators/physiology , Plant Roots/growth & development , Amino Acids/metabolism , Arabidopsis/enzymology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Glutamic Acid/metabolism , Leucine/metabolism , Lysine/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Growth Regulators/metabolism , Plant Root Cap/metabolism , Plant Root Cap/physiology , Plant Roots/enzymology , Plant Roots/metabolism , Seedlings/enzymology , Seedlings/growth & development , Seedlings/metabolism , Tryptophan/metabolism
6.
Planta ; 250(4): 1177-1189, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31190117

ABSTRACT

MAIN CONCLUSION: A MAPK module, of which MPK6 kinase is an important component, is involved in the coordination of the responses to Pi and Fe in the primary root meristem of Arabidopsis thaliana. Phosphate (Pi) deficiency induces determinate primary root growth in Arabidopsis through cessation of cell division in the meristem, which is linked to an increased iron (Fe) accumulation. Here, we show that Mitogen-Activated Protein Kinase6 (MPK6) has a role in Arabidopsis primary root growth under low Pi stress. MPK6 activity is induced in roots in response to low Pi, and such induction is enhanced by Fe supplementation, suggesting an MPK6 role in coordinating Pi/Fe balance in mediating root growth. The differentiation of the root meristem induced by low Pi levels correlates with altered expression of auxin-inducible genes and auxin transporter levels via MPK6. Our results indicate a critical role of the MPK6 kinase in coordinating meristem cell activity to Pi and Fe availability for proper primary root growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Iron/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphates/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Biological Transport , Cell Division , Genes, Reporter , Indoleacetic Acids/metabolism , Meristem/enzymology , Meristem/genetics , Meristem/growth & development , Mitogen-Activated Protein Kinases/genetics , Plant Growth Regulators , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/growth & development , Stress, Physiological
7.
Plant Mol Biol ; 96(4-5): 339-351, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29344832

ABSTRACT

KEY MESSAGE: The function and components of L-glutamate signaling pathways in plants have just begun to be elucidated. Here, using a combination of genetic and biochemical strategies, we demonstrated that a MAPK module is involved in the control of root developmental responses to this amino acid. Root system architecture plays an essential role in plant adaptation to biotic and abiotic factors via adjusting signal transduction and gene expression. L-Glutamate (L-Glu), an amino acid with neurotransmitter functions in animals, inhibits root growth, but the underlying genetic mechanisms are poorly understood. Through a combination of genetic analysis, in-gel kinase assays, detailed cell elongation and division measurements and confocal analysis of expression of auxin, quiescent center and stem cell niche related genes, the critical roles of L-Glu in primary root growth acting through the mitogen-activated protein kinase 6 (MPK6) and the dual specificity serine-threonine-tyrosine phosphatase MKP1 could be revealed. In-gel phosphorylation assays revealed a rapid and dose-dependent induction of MPK6 and MPK3 activities in wild-type Arabidopsis seedlings in response to L-Glu. Mutations in MPK6 or MKP1 reduced or increased root cell division and elongation in response to L-Glu, possibly modulating auxin transport and/or response, but in a PLETHORA1 and 2 independent manner. Our data highlight MPK6 and MKP1 as components of an L-Glu pathway linking the auxin response, and cell division for primary root growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/physiology , Glutamic Acid/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Plant Roots/enzymology , Protein Tyrosine Phosphatases/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/biosynthesis , Cell Proliferation/drug effects , Enzyme Induction/drug effects , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/pharmacology , Membrane Transport Proteins/metabolism , Meristem/drug effects , Meristem/enzymology , Mitogen-Activated Protein Kinases/biosynthesis , Mutation/genetics , Plant Roots/drug effects , Plant Roots/growth & development , Protein Tyrosine Phosphatases/biosynthesis , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...