Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 14(10): e15864, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36069030

ABSTRACT

Pathogenic T helper cells (Th cells) that respond to self-antigen cannot be easily distinguished from beneficial Th cells. These cells can generate systemic autoimmune disease in response to widely expressed self-antigens. In this study, we have identified neuropilin-1 (NRP1) as a cell surface marker of self-reactive Th cells. NRP1+ Th cells, absent in non-regulatory T cell subsets in normal mice, appeared in models of systemic autoimmune disease and strongly correlated with disease symptoms. NRP1+ Th cells were greatly reduced in Nr4a2 cKO mice, which have reduced self-reactive responses but showed normal responses against exogenous antigens. Transfer of NRP1+ Th cells was sufficient to initiate or accelerate systemic autoimmune disease, and targeting NRP1-expressing Th cells therapeutically ameliorated SLE-like autoimmune symptoms in BXSB-Yaa mice. Peripheral NRP1+ Th cells were significantly increased in human SLE patients. Our data suggest that self-reactive Th cells can be phenotypically distinguished within the Th cell pool. These findings offer a novel approach to identify self-reactive Th cells and target them to treat systemic autoimmune disease.


Subject(s)
Autoimmune Diseases , Neuropilin-1 , Animals , Autoantigens , Humans , Mice , Neuropilin-1/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...