Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 66: 254-264, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25222329

ABSTRACT

We simulate the influence of multiple sources of enterococci (ENT) as faecal indicator bacteria (FIB) in recreational water bodies on potential human health risk by considering waters impacted by human and animal sources, human and non-pathogenic sources, and animal and non-pathogenic sources. We illustrate that risks vary with the proportion of culturable ENT in water bodies derived from these sources and estimate corresponding ENT densities that yield the same level of health protection that the recreational water quality criteria in the United States seeks (benchmark risk). The benchmark risk is based on epidemiological studies conducted in water bodies predominantly impacted by human faecal sources. The key result is that the risks from mixed sources are driven predominantly by the proportion of the contamination source with the greatest ability to cause human infection (potency), not necessarily the greatest source(s) of FIB. Predicted risks from exposures to mixtures comprised of approximately 30% ENT from human sources were up to 50% lower than the risks expected from purely human sources when contamination is recent and ENT levels are at the current water quality criteria levels (35 CFU 100 mL(-1)). For human/non-pathogenic, human/gull, human/pig, and human/chicken faecal mixtures with relatively low human contribution, the predicted culturable enterococci densities that correspond to the benchmark risk are substantially greater than the current water quality criteria values. These findings are important because they highlight the potential applicability of site specific water quality criteria for waters that are predominantly un-impacted by human sources.


Subject(s)
Bacteria , Feces/microbiology , Water Microbiology , Water Quality , Animals , Enterococcus , Environmental Monitoring , Escherichia coli O157 , Gastrointestinal Diseases/microbiology , Humans , Probability , Risk Assessment , Swine , United States , Water Pollutants/analysis , Water Pollution , Water Supply
2.
Water Res ; 44(16): 4674-91, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20656314

ABSTRACT

This work was conducted to determine whether estimated risks following exposure to recreational waters impacted by gull, chicken, pig, or cattle faecal contamination are substantially different than those associated with waters impacted by human sources such as treated wastewater. Previously published Quantitative Microbial Risk Assessment (QMRA) methods were employed and extended to meet these objectives. Health outcomes used in the analyses were infection from reference waterborne pathogens via ingestion during recreation and subsequent gastrointestinal (GI) illness. Illness risks from these pathogens were calculated for exposure to faecally contaminated recreational water at the U.S. regulatory limits of 35 cfu 100 mL(-1) enterococci and 126 cfu 100 mL(-1)Escherichia coli. The probabilities of GI illness were calculated using pathogen dose-response relationships from the literature and Monte Carlo simulations. Three scenarios were simulated, representing a range of feasible interpretations of the available data. The primary findings are that: 1) GI illness risks associated with exposure to recreational waters impacted by fresh cattle faeces may not be substantially different from waters impacted by human sources; and 2) the risks associated with exposure to recreational waters impacted by fresh gull, chicken, or pig faeces appear substantially lower than waters impacted by human sources. These results suggest that careful consideration may be needed in the future for the management of recreational waters not impacted by human sources.


Subject(s)
Environmental Exposure/analysis , Feces/microbiology , Recreation , Water Microbiology , Water Pollutants/analysis , Water Supply/analysis , Animals , Cattle , Charadriiformes , Chickens , Computer Simulation , Enterococcus/isolation & purification , Environmental Exposure/standards , Escherichia coli/isolation & purification , Humans , Monte Carlo Method , Risk Assessment , Swine , United States , Water Pollutants/standards , Water Supply/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...