Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 11(4): 1680-1691, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30620017

ABSTRACT

A liquid crystal (LC) droplet resting on a poly-dimethylsiloxane substrate could rapidly spread upon solvent vapour annealing to form a non-uniform film. While the solvophobic surfaces restricted the spreading of the droplet to form a thicker film upon solvent annealing, the solvophilic substrates allowed the formation of a thinner film under similar conditions. Withdrawal of the solvent exposure caused rapid evaporation of the solvent molecules from the film, especially near the retracting contact-line to form microscale LC-droplets, which shrunk into nanoscopic ones after evaporation of the excess solvent. The thinner films on solvophilic surfaces allowed the formation of droplets with smaller size and periodicity as small as ∼100 nm and ∼200 nm, respectively. Furthermore, the use of a patterned substrate could impose a large-area ordering on the nanodroplets. A theoretical model for an evaporating film of LC-solution revealed that the spacing of nanodroplets could be decided by the interplay of stabilizing and destabilizing components of capillary force while van der Waals interaction played a supportive role when the film was ultrathin near the contact line. The micro/nanodroplets thus formed showed an anomalous oscillatory rotational motion originating from the difference in the Laplace pressure near contact lines under the influence of an external electric field. The application of the Lorenz force to these droplets showed translation and rotational motions followed by ejection of satellite droplets.

2.
ACS Appl Mater Interfaces ; 9(1): 1066-1076, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-28026170

ABSTRACT

Chemical pattern directed spin-dewetting of a macroscopic droplet composed of a dilute organic solution of liquid crystal (LC) formed an ordered array of micro- and nanoscale LC droplets. Controlled evaporation of the spin-dewetted droplets through vacuum drying could further miniaturize the size to the level of ∼90 nm. The size, periodicity, and spacing of these mesoscale droplets could be tuned with the variations in the initial loading of LC in the organic solution, the strength of the centripetal force on the droplet, and the duration of the evaporation. A simple theoretical model was developed to predict the spacing between the spin-dewetted droplets. The patterned LC droplets showed a reversible phase transition from nematic to isotropic and vice versa with the periodic exposure of a solvent vapor and its removal. A similar phase transition behavior was also observed with the periodic increase or reduction of temperature, suggesting their usefulness as vapor or temperature sensors. Interestingly, when the spin-dewetted droplets were confined between a pair of electrodes and an external electric field was applied, the droplets situated at the hydrophobic patches showed light-reflecting properties under the polarization microscopy highlighting their importance in the development of micro- or nanoscale LC displays. The digitized LC droplets, which were stationary otherwise, showed dielectrophoretic locomotion under the guidance of the external electric field beyond a threshold intensity of the field. Remarkably, the motion of these droplets could be restricted to the hydrophilic zones, which were confined between the hydrophobic patches of the chemically patterned surface. The findings could significantly contribute in the development of futuristic vapor or temperature sensors, light reflectors, and self-propellers using the micro- or nanoscale digitized LC droplets.

3.
Soft Matter ; 11(1): 139-46, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25372336

ABSTRACT

Ultrathin liquid crystal films showed a nematic to isotropic transition when exposed to solvent vapour for a short duration while a reverse isotropic to nematic transition was observed when the film was isolated from the solvent exposure. The phase transitions were associated with the appearance and fading of surface patterns as the solvent molecules diffused into and out of the film matrix, resulting in the destruction or restoration of the orientational order. A long-time solvent vapour exposure caused the dewetting of the film on the surface, which was demonstrated by the formation of holes and their growth in size with the progress of time. Even at this stage, withdrawal of the solvent exposure produced an array of nematic fingers, which nearly self-healed the dewetted holes. The change in contact angle due to the phase transition coupled with the imbalance of osmotic pressure across the contact line due to the differential rate of solvent evaporation from the film and the hole helped the fingers to grow towards the centre of the hole. The appearance of the fingers upon withdrawal of the solvent exposure and their disappearance upon exposure to solvent were also found to be a nearly reversible process. These findings could significantly contribute to the development of vapour sensors and self-healing surfaces using liquid crystal thin films.

SELECTION OF CITATIONS
SEARCH DETAIL
...