Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 858(Pt 1): 159756, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36461574

ABSTRACT

This is the first detailed study on 14C activity in the environment surrounding a nuclear facility in India. Samples of food matrices and wild plants from the off-site locations of the PHWR nuclear power plant (NPP) at Kaiga were analysed by liquid scintillation spectrometry, results were validated by accelerator mass spectrometry, and an extensive database (N = 142) was established. The stable isotope ratio of carbon (δ13C) in terrestrial plants varied from -33.5 to -23.3 ‰. The maximum excess 14C activity recorded in terrestrial biota was 44 Bq kg-1C (19 pMC). About 75 % of the samples exhibited specific activity in the range 228-249 Bq kg-1C (101-110 pMC). Statistical tests on the 14C specific activity dataset for 2.3-5, 5-10, and 10-20 km radial zones confirmed that the impact of the operation of the NPP on the environment beyond 5 km is minimal. The study suggests that the 14C activity released through gaseous effluents from Kaiga NPP is transported to greater distances along the axis of the valley than that predicted by the Gaussian plume model and those reported for other NPP sites worldwide. This is due to the unique topography of the Kaiga valley in which wind flow channelling, strong winds in the valley mouth, and calm wind within the valley due to the blocking effect by hills for the south-westerly wind regime play dominant roles in the transport of gaseous effluents. The 14C specific activity values at upwind monitoring stations located at >5 km distance from the NPP during the south-westerly wind regime were higher than those observed during the north-easterly wind regime when the same monitoring stations were located on the downwind side. The ingestion dose to the population in the 2.3-5 km radius zone, attributable to the release of 14C from the NPP, was 0.75 µSv y-1. This is a negligibly small fraction of the ICRP recommended dose limit of 1000 µSv y-1 for the public from other than natural sources. The dose due to the natural 14C activity in the Kaiga region was 12 µSv y-1, corresponding to the ambient natural activity of 230 Bq kg-1 C.


Subject(s)
Biota , Nuclear Power Plants , Carbon Radioisotopes , India , Gases
2.
J Environ Radioact ; 255: 107006, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36162146

ABSTRACT

This is a detailed study on oxide (CO2) and reduced (hydrocarbons, CnHm) forms of 14C releases through gaseous effluents from the Kaiga nuclear power plant (NPP), on the West Coast of India, where 4 × 220 MW(e) pressurized heavy water reactors (PHWRs) are operating. The gaseous effluent from the common stack of reactor units 3 and 4 (each of 220 MW(e)) was sampled from 2017 to 2020 for 14C activity monitoring and analysed for 14C activity by liquid scintillation counting. The normalized release rate corresponding to the four-year monitoring period had a geometric mean value of 0.12 TBq GW(e)-1 a-1 (geometric standard deviation = 7.4), and the arithmetic mean with associated standard deviation was 0.75 ± 1.47 TBq GW(e)-1 a-1. The relative percentage contribution of reduced form (CH4) of 14C species was less than 1.27% of the total release. The normalized release rate from Kaiga NPP was similar to those reported for the other PHWR NPPs of the world. The 14C specific activity in the ambient air in the vicinity of the NPP was monitored at four locations. The maximum excess 14C activity values in the ambient air in the vicinity of the NPP, evaluated by comparing the specific activity recorded for the clean air region at ∼300 km from the NPP, were 65.1 Bq kg-1C (28.76 pMC) and 222.4 Bq kg-1C (98.23 pMC) for the years 2019 and 2020 respectively. In addition, the release rates were calculated from the Gaussian plume model using site-specific atmospheric dilution factors and the excess 14C specific activity measured at four off-site monitoring stations. The calculated values of release rates were in agreement (within a factor of ∼3) with the measured values.


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Nuclear Power Plants , Carbon Radioisotopes/analysis , Deuterium Oxide , Air Pollutants, Radioactive/analysis , India , Gases
3.
Sci Rep ; 12(1): 7528, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534517

ABSTRACT

The radionuclide transfer between compartments is commonly described by transfer parameters representing the ratio of concentrations of an element in two compartments for equilibrium conditions. This is a comprehensive study on the soil-to-grass transfer factor (Fv) and grass-to-cow milk transfer coefficient (Fm) for stable strontium (Sr) for soil-grass (pasture)-cow (Bos taurus) milk environmental pathway under field conditions for a high rainfall tropical monsoonal climatic region of the Indian subcontinent. The study was conducted in the vicinity of the Kaiga nuclear power plant (NPP), situated ~ 58 km inland of the West Coast of the Indian subcontinent. A grass field was developed exclusively for this study, and two cows of the native breed were raised to graze on it. The soil, grass, and milk were analyzed to evaluate the Fv and the Fm values for the stable Sr. For comparison, several pasture lands and the cows raised by the villagers and a dairy farm were also studied. The Fv values were in the range 0.18-8.6, the geometric mean (GM) being 1.8. The correlations of Fv values with a range of physicochemical parameters are presented. The GM values for Fm were 2.2 × 10-3 d L-1 and 7.2 × 10-3 d L-1 for the two cows raised for this study, 2.6 × 10-3 d L-1 for those raised by the villagers, and 4.2 × 10-3 d L-1 for the dairy farm. The site-specific Fm value for the region was determined as 3.2 × 10-3 d L-1. The concentration ratio (CR), defined as the ratio of Sr concentration in milk to that in feed under equilibrium conditions, exhibited less variability (1.8 × 10-2-5.4 × 10-2) among the three categories of cows.


Subject(s)
Milk , Soil Pollutants, Radioactive , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Female , Lactation , Milk/chemistry , Plant Breeding , Poaceae , Soil , Soil Pollutants, Radioactive/analysis , Strontium/metabolism
4.
J Environ Radioact ; 240: 106740, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34592534

ABSTRACT

The results of the first detailed study, involving a large number of samples, on water equivalent factor (WEQp), non-exchangeable organically bound tritium (NE-OBT) and tissue free water tritium (TFWT) activity concentrations in predominant plant species of the tropical monsoonal climatic region, are presented. A total of 369 samples from the vicinity of the PHWR nuclear power plant (NPP) at Kaiga, West Coast of India, and 47 samples of the control region (region not affected by local anthropogenic sources) were analysed. The WEQp varied in the range of 0.347-0.666 L kg-1 with an overall mean value of 0.540 ± 0.045 L kg-1. The NE-OBT activity concentration varied in the range of <9.8-60.9 Bq L-1 of combustion water (mean = 24.6 ± 11.5 Bq L-1) and that of TFWT in the range of 9.2-60.5 Bq L-1 (mean = 30.7 ± 10.9 Bq L-1) in the vicinity of the NPP. Rigorous statistical analysis of the data confirmed that (i) the activity concentrations of both forms of tritium decreased with the increase in the distance between the sampling location and NPP, and beyond 10 km, it was similar to that of the control region, (ii) the incorporation of tritium released from the NPP into wild plant leaves is not species-dependent, (iii) the NE-OBT activity concentration in the 5-10 km zone exhibited a dependence on the prevailing wind regime with respect to the NPP, but not in the 2.3-5 km zone which suggests that the transport of tritium, released into the atmosphere as the gaseous effluent, through diffusion is a dominating factor governing its activity concentration in the 2.3-5 km zone. The NE-OBT to TFWT specific activity concentration ratio (R-value) had a mean value of 0.82 ± 0.27 (range: 0.38-1.64) for samples collected from the vicinity of the NPP and 1.93 ± 0.50 (range: 1.35-3.19) for the control region. Recording higher NE-OBT activity concentration and R-value at the control region highlights the necessity of detailed studies to understand the mechanism of NE-OBT partitioning in the terrestrial environment.


Subject(s)
Nuclear Power Plants , Radiation Monitoring , Atmosphere , Tritium/analysis , Tropical Climate
5.
J Environ Radioact ; 234: 106621, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33991742

ABSTRACT

Nuclear accidents, despite having an extremely low probability of occurrence, could cause uncontrolled release of radioactive elements (fission and activation products) into the environment, and may ultimately lead to contamination of food products. Such a scenario requires extraordinary measures for control of food, which might be contaminated to a level not suitable for human consumption. Agricultural products (which include grain crops, vegetable, fruits, dairy, meat, eggs and poultry) pass through a series of local, district and state level markets to finally reach consumers. An effective intervention at different stages of distribution by targeted sampling and analysis of suspected (contaminated) foodstuffs will substantially reduce the chances of contaminated food to reach the public. At the same time, it will also ensure food security of the people without imposing unreasonable restrictions in market flow. This can also help in getting the farmers adequately compensated. This paper presents a protocol for sampling and analysis suitable for India, considering the diversity with respect to climate, soil type, land use, crop pattern, population density, etc. The paper also provides an estimate of infrastructure requirement to carry out environmental monitoring following the emergency with respect to human resources and instruments. The paper proposes to use the national web portal for collection of data pertaining to crop pattern, land use and market flow. A web-based decision support system (Web-DSS) on a GIS platform, for sampling, analysis and display of data online would enhance the transparency of decision being taken and enable the administrators to effectively monitor the work flow, details of sample collection, analysis and effective use of human and other resources.


Subject(s)
Radiation Monitoring , Radioactive Hazard Release , Agriculture , Crops, Agricultural , Humans , India
6.
Appl Radiat Isot ; 172: 109685, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33799067

ABSTRACT

A method for the determination of 14C activity in the ambient air was optimised with the development of a simple setup for the regeneration of CO2 from carbonate sample and saturating the absorber in <45 min for direct determination of activity by liquid scintillation counting (LSC). Atmospheric CO2 was trapped in NaOH solution and precipitated as BaCO3 by adding BaCl2. The carbonate sample was taken in a newly designed regeneration system, subjected to acid hydrolysis, and the absorber (CarboSorb-E) was saturated with the CO2 regenerated from carbonate sample. This allowed optimisation of CO2 absorption by the absorber (up to ~ 2.3941 g of CO2/10 mL with an average of 2.1688 g) and a minimum detectable activity value of 14 Bq kg-1C for a counting time of 300 min (8 Bq kg-1C for 1000 min) was achieved with Quantulus - 1220 LSC system. The necessity of (i) the measurement of the total volume of air sampled, (ii) the determination of trapping efficiency for CO2 in the NaOH, recovery of 14C in chemical processing of BaCO3, and subsequent regeneration and absorption processes, and (iii) independent determination of carbon content in the air for expressing the results in terms of 14C specific activity (Bq kg-1C), are avoided in this method. The method is capable of yielding accurate results, in a considerably shorter time when compared to previously reported methods, with a deviation of <2.2% from the target value (with a relative standard deviation of 1.1%, and a relative error of 0.53%) when ambient air samples from clean air region (region not affected by local anthropogenic sources of 14C) are analysed. Validation of the method was performed by (i) analysing BaCO3 sample derived from ambient air by accelerator mass spectrometry, and (ii) analysing the CO2 produced from the combustion of IAEA C3 reference material. Upon validation, the suitability of the method for determining small excess 14C specific activity in the vicinity of a nuclear power plant was demonstrated.

7.
J Environ Radioact ; 226: 106345, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33032834

ABSTRACT

Accelerator mass spectrometry and benzene synthesis coupled with liquid scintillation spectrometry are often used for accurate measurements of 14C activity in the environmental matrices. Thermal oxidation is one of the methods employed for 14C determination in environmental matrices. In this method, the sample is oxidised at high temperature (600-900 °C) to convert carbon species to CO2 and trapped in an amine-based absorber for determining the activity in a liquid scintillation counting (LSC) system. In this study, the performance of a commercially available tube furnace system (pyrolyser), for batch combustion of samples, was evaluated for the determination of 14C specific activity in terrestrial biota samples. Significant improvements over the manufacturer specified method, which is primarily designed for analysis of samples with activity well above the environmental background level, was implemented to achieve accurate determination of 14C specific activity at ambient background level. In the improved method, the CO2 produced from the combustion of the sample was isolated from the combustion products through cryogenic trapping and then absorbed in the absorber (Carbo-Sorb E) through a simple off-line transfer process. This allowed (i) optimisation of CO2 absorption by the absorber (2.2477 g of CO2/10 mL), (ii) achieving good accuracy and precision in the measurements, and a minimum detectable activity value of 13 Bq kg-1C for a counting time of 300 min (7 Bq kg-1C for 1000 min), (iii) avoiding uncertainty associated with the determination of recovery of 14C in the combustion and trapping process, and (iv) elimination of the need for an independent determination of carbon content (%) for expressing the results in terms of 14C specific activity. The method is capable of yielding accurate results with a deviation of <2.4% from the target value for IAEA C3 quality assurance reference material (with a relative standard deviation of 1.40%, and relative error of 0.34%). The combined uncertainty (1σ) associated with the measurements was computed to be 3.4%. Upon optimisation, the suitability of the method for the determination of 14C specific activity in typical terrestrial biota samples of clean air region (region not affected by local anthropogenic sources) and for the quantification of a small increase in the 14C activity above ambient levels in the vicinity of a nuclear power plant is demonstrated.


Subject(s)
Radiation Monitoring , Carbon , Carbon Radioisotopes/analysis , Nuclear Power Plants
8.
Appl Radiat Isot ; 166: 109390, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33091858

ABSTRACT

Tritium in the form of tritiated water is easily incorporated into terrestrial biota as tissue free water tritium (TFWT). A part of TFWT is converted into organically bound tritium (OBT) through metabolic processes. For the computation of NE-OBT activity (expressed as Bq L-1 of combustion water) in terrestrial plants, knowledge on 'water equivalent factor (WEQp)', defined as the volume of water produced from the combustion of 1 kg of the dry sample, is essential. On a global scenario, experimental data are not available on this parameter. This paper presents (i) a method for determination of WEQp by combustion method using a tube furnace system, (ii) a large database (N = 294) on WEQp parameter for samples of tropical monsoonal climate region of the Indian subcontinent, and (iii) NE-OBT activity in terrestrial biota samples (N = 186) collected from the vicinity of a PHWR nuclear power plant of India. The data generated in this study on WEQp serves for the validation of the data compiled in IAEA (2009 and 2010), which are estimated based on the hydrogen content of protein, fat and carbohydrates, and the fractions of protein, fat and carbohydrates. The WEQp varied in the ranges of 0.492-0.678 L kg-1 (GM = 0.569 Bq L-1, GSD = 1.06), 0.520-0.630 L kg-1 (GM = 0.557 Bq L-1, GSD = 1.02) 0.473-0.633 L kg-1 (GM = 0.562 Bq L-1, GSD = 1.02) for non-leafy vegetables, leafy vegetables, and fruits, respectively. A comparison between the experimental WEQp data with those compiled in the IAEA report revealed that the maximum deviation between the two data sets is <10%. The NE-OBT activity in the food samples collected from 2.3 to 20 km zone around NPP had a geometric mean (GM) value of 25.4 Bq L-1 (GSD = 1.6, N = 186). Variations in NE-OBT activity with different seasons of the year are discussed.

9.
J Environ Radioact ; 186: 71-77, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28886873

ABSTRACT

Air-to-grass mass interception factors for radionuclide are important basic input parameter for the estimation of radiation dose to the public around a nuclear power plant. In this paper, we present the determination of air-to- grass mass interception factors for iodine using a 2 m × 2 m × 2 m (l × b × h) size environmental chamber. The temperature, humidity, and rainfall inside the environmental chamber was controlled to required values to simulate different environmental conditions. Grass (Pennisetum purpureum, Schum), grown in pots, was kept inside the environmental chamber and stable iodine in elemental form was sublimed quickly inside the chamber to simulate an accidental release of iodine to the environment. The concentration of iodine in the air was measured periodically by drawing air through a bubbling setup, containing 1% sodium carbonate solution. The mass interception factor for dry deposition varied in the range of 0.25-7.7 m2 kg-1 with mean value of 2.2 m2 kg-1 with respect to fresh weight of grass, and that due to wet deposition varied in the range of 0.6-4.8 m2 kg-1 with mean value of 2.3 m2 kg-1. The mass interception factor was inversely correlated with the total iodine deposited through dry deposition as well as with the rainfall.


Subject(s)
Air Pollutants, Radioactive/analysis , Iodine/analysis , Radiation Monitoring , Nuclear Reactors , Poaceae/chemistry , Radioisotopes
10.
Radiat Prot Dosimetry ; 174(4): 583-587, 2017 May 01.
Article in English | MEDLINE | ID: mdl-27542814

ABSTRACT

The field measurements of 3H in the form of HTO present in air moisture carried out around Madras Atomic Power Station were compared with predicted values using atmospheric dispersion modeling. Air 3H samples were collected from different sectors at the site boundary of the operating reactors for the period of 2 y and compared with Gaussian Plume model. The predictions were comparable with the measured value. The slight variation observed between the two methods is attributed to the uncertainty involved in the measurement of air 3H concentration and in the measurement of site-specific meteorological parameters. The radiation dose imparted to members of public due to the levels observed is well within station technical specification limit for 3H.


Subject(s)
Radiation Monitoring , Tritium/analysis , Atmosphere , Environment , Environmental Monitoring , India , Models, Theoretical , Normal Distribution
11.
J Hazard Mater ; 317: 457-465, 2016 Nov 05.
Article in English | MEDLINE | ID: mdl-27322903

ABSTRACT

The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

12.
J Environ Radioact ; 151 Pt 1: 311-320, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26555366

ABSTRACT

The concentrations of total dissolved uranium (U), its isotopic composition ((234)U, (235)U, (238)U) and two long lived Ra isotopes ((226)Ra and (228)Ra) in alluvial aquifers of groundwater were determined to investigate the groundwater flow pattern in the south-western (SW) Punjab, India. Particular attention was given to the spatial variability of activity ratios (ARs) of (234)U/(238)U and (226)Ra/(228)Ra to predict the possible sources and supply process of U into the water from the solid phase. The measured groundwater (234)U/(238)U ARs were ∼1 or >1 in the shallow zone (depth < 30 m) with high U concentration and <1 in the deeper zone (depth > 30 m) with relatively low U concentration. The simultaneous elevated U concentration and (234)U/(238)U ARs in waters were possibly due to differences in imprints of rock-water interactions under hydrologic conditions. However, (234)U/(238)U ARs < 1 clearly indicate the lack of recharge from surface water to groundwater leading to (234)U deficit in groundwater. This deficit might be also attributed to alpha recoil processes under strong dissolution. Overall, the decreasing pattern of (234)U/(238)U ARs observed from SE to SW or NW ward clearly indicates a groundwater flow paths from SE to SW/NW. Similarly, (226)Ra/(238)U ARs < 1 for all water samples reflect that the precursor (238)U is fairly mobile relative to (226)Ra. This might be due to unusually high amount of (238)U in groundwaters and subsequently the different geochemistry of the two isotopes. On the other hand, (226)Ra/(228)Ra ARs in groundwaters varied widely and observed about 50-300 times higher than (238)U/(232)Th ARs in granitic rocks or soils. Such elevation in ARs might be attributed to different dissolution properties of their parents during water-rock interactions or lattice damage during decay or local enrichments of uranium in the aquifers.


Subject(s)
Groundwater/analysis , Radiation Monitoring , Radium/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis , India , Water Movements
13.
J Environ Radioact ; 138: 456-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25223293

ABSTRACT

The raw water (RW) samples collected from natural sources are subjected to water treatment process, including reverse osmosis (RO), and are packed in bottles as packaged drinking water (PDW). Raw water (21 samples) taken from deep wells of Chennai and Secunderabad which are used in the production of PDW, were analysed for (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb activity concentrations. Activity Concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra, (210)Pb and (210)Po in PDW were also analysed. The mean activity concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb in RW at Chennai were 12.1, ≤1.3, 7.1, 2.6, 27.5, and 16.3 mBq/L respectively. The mean activity concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb in RW at Secunderabad were found to be 40.9, 1.7, 41.5 84.5, 100.1, and 17.0 mBq/L respectively. The mean concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra, (210)Pb and (210)Po in PDW at Chennai were found to be ≤1.3, ≤1.3, ≤1.3, ≤0.2, ≤1.7, 28.0 and 1.2 mBq/L at Secunderabad were found to be ≤1.3, ≤1.3, 1.7, 4.3, 5.0 and 28.1 mBq/L. The study indicated a considerable reduction in the concentration of natural radionuclides due to water treatment. The reduction ratios of RW to PDW for (234)U, (238)U, (226)Ra, (228)Ra were 97, 96, 94 and 95%. In case of (210)Pb, the PDW showed higher concentration of (210)Pb than RW. This was due to its in growth from (222)Rn which was not removed in the RO process.


Subject(s)
Drinking Water/analysis , Water Pollutants, Radioactive/analysis , Water Purification , Water Wells/analysis , India , Lead Radioisotopes/analysis , Radiation Monitoring , Radium/analysis , Uranium/analysis
14.
Radiat Environ Biophys ; 53(4): 739-44, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25209644

ABSTRACT

Uranium mine workers are exposed to ore dust containing uranium and its daughter products during different mining operations. These radionuclides may pose inhalation hazards to workers during the course of their occupation. The most significant among these radionuclides is (226)Ra. The measurement of radium body burden of uranium mine workers is important to assess their internal exposure. For this purpose, the radon-in-breath measurement technique has been used in the present paper. Workers at the Jaduguda mine, India, associated with different categories of mining operations were monitored between 2001 and 2007. The measurement results indicate that workers--depending on mining operation category--show (226)Ra body burdens ranging from 0.15 to 2.85 kBq. The maximum body burden was found for workers associated with timbering operations, with an average (226)Ra body burden of 0.85 ± 0.54 kBq. Overall, the average value observed for 800 workers was 0.76 ± 0.51 kBq, which gives rise to an average effective dose of 1.67 mSv per year for inhalation and 0.21 mSv per year for ingestion.


Subject(s)
Mining , Occupational Exposure/analysis , Radium/analysis , Uranium , Body Burden , Humans , India
15.
J Environ Radioact ; 124: 101-12, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23685702

ABSTRACT

Detailed studies were carried out to establish site-specific soil to grass transfer factors (Fv) and grass to cow milk transfer coefficients (Fm) for radioactive cesium ((137)Cs) and stable cesium (Cs) for Kaiga region, where a nuclear power station has been in operation for more than 10 years. The study included adopted cows, cows of local farmers, and cows from the dairy farm. A grass field was developed specifically for the study and 2 local breed cows were adopted and allowed to graze in this grass field. The soil and grass samples were collected regularly from this field and analyzed for the concentrations of (137)Cs and stable Cs to evaluate the soil to grass Fv values. The milk samples from the adopted cows were analyzed for the (137)Cs and stable Cs concentrations to evaluate Fm values. For comparison, studies were also carried out in dominant grazing areas in different villages around the nuclear power plant and the cows of local farmers which graze in these areas were identified and milk samples were collected and analyzed regularly. The geometric mean values of Fv were found to be 1.1 × 10(-1) and 1.8 × 10(-1) for (137)Cs and stable Cs, respectively. The Fm of (137)Cs had geometric mean values of 1.9 × 10(-2) d L(-1) and 4.6 × 10(-2) d L(-1), respectively, for adopted Cows 1 and 2; 1.7 × 10(-2) d L(-1) for the cows of local farmers, and 4.0 × 10(-3) d L(-1) for the dairy farm cows. The geometric mean values of Fm for stable Cs were similar to those of (137)Cs. The Fm value for the dairy farm cows was an order of magnitude lower than those for local breed cows. The Fm values observed for the local breed cows were also an order of magnitude higher when compared to the many values reported in the literature and in the IAEA publication. Possible reasons for this higher Fm values were identified. The correlation between Fv and Fm values for (137)Cs and stable Cs and their dependence on the potassium content ((40)K and stable K) in the soil and grass were also studied. In order to estimate the ingestion dose accurate data of the dietary habits of the population was necessary and this data was collected through a well planned demographic survey. The internal doses to a child due to the ingestion of (137)Cs along with the milk of the local cows and from the dairy farm were found to be 0.29 µSv y(-1) and 0.04 µSv y(-1),while that to an adult were 0.39 µSv y(-1) and 0.05 µSv y(-1), respectively.


Subject(s)
Cesium Radioisotopes/analysis , Food Contamination, Radioactive/analysis , Milk/chemistry , Soil Pollutants, Radioactive/analysis , Adult , Animals , Cattle , Child , Humans , India , Nuclear Power Plants , Poaceae/chemistry , Radiation Dosage , Radiation Monitoring , Soil/chemistry
16.
Radiat Prot Dosimetry ; 156(2): 223-30, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23535080

ABSTRACT

Site-specific transfer coefficient from feed to cow's milk, for (137)Cs in the villages around Narora, a nuclear power station site in India, determined over a period of 17 y, is presented in this paper. In the transport model for the prediction of the concentration of (137)Cs in milk, the transfer coefficient from feed to milk, Fm, is an important parameter. The transfer coefficient value is determined from (137)Cs concentration in milk and grass samples of the Narora region, and the result ranged from 4.28E-03 to 3.30E-02 d l(-1) with a geometric mean value of 1.15E-03 d l(-1). The highest and the lowest values were only below one order of magnitude different from the mean, regardless of the type of diet, milk yield and age of the cow. The result is compared with that for (40)K, determined concurrently at the same region and ranged from 6.92E-03 to 8.01E-03 d l(-1) with a geometric mean value of 7.45E-03 d l(-1). This parameter is quite useful in decision-making for implementing countermeasures during a large-area contamination with (137)Cs in tropical areas like Narora. The ingestion dose from fallout (137)Cs through milk intake for adult and child is also estimated.


Subject(s)
Cesium Radioisotopes/analysis , Food Contamination, Radioactive/analysis , Milk/chemistry , Poaceae/chemistry , Potassium Radioisotopes/analysis , Radiation Monitoring , Soil Pollutants, Radioactive/analysis , Animal Feed/analysis , Animals , Cattle , Gamma Rays , India
17.
J Environ Radioact ; 118: 80-92, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23266913

ABSTRACT

India is the second largest producer of rice (Oryza sativa L.) in the world and rice is an essential component of the diet for a majority of the population in India. However, detailed studies aimed at the evaluation of radionuclide transfer factors (F(v)) for the rice grown in India are almost non-existent. This paper presents the soil to rice transfer factors for natural ((226)Ra, (228)Ra, (40)K, and (210)Pb) and artificial ((137)Cs) radionuclides for rice grown in natural field conditions on the West Coast of India. A rice field was developed very close to the Kaiga nuclear power plant and the water required for this field was drawn from the cooling water discharge canal of the power plant. For a comparative study of the radionuclide transfer factors, rice samples were also collected from the rice fields of nearby villages. The study showed that the (226)Ra and (228)Ra activity concentrations were below detection levels in different organs of the rice plant. The soil to un-hulled rice grain (40)K transfer factor varied in the range of 6.5 × 10(-1) to 2.9 with a mean of 0.15 × 10(1), and of (210)Pb varied in the range of <1.2 × 10(-2) to 8.1 × 10(-1) with a mean of 1.4 × 10(-1), and of (137)Cs varied in the range of 6.6 × 10(-2) to 3.4 × 10(-1) with a mean of 2.1 × 10(-1). The mean values of un-hulled grain to white rice processing retention factors (F(r)) were 0.12 for (40)K, 0.03 for (210)Pb, and 0.14 for (137)Cs. Using these processing retention factors, the soil to white rice transfer factors were estimated and these were found to have mean values of 1.8 × 10(-1), 4.2 × 10(-3), and 3.0 × 10(-2) for (40)K, (210)Pb, and (137)Cs, respectively. The study has shown that the transfer of (40)K was higher for above the ground organs than for the root, but (210)Pb and (137)Cs were retained in the root and their transfer to above the ground organs of the rice plant is significantly lower.


Subject(s)
Cesium Radioisotopes/metabolism , Lead Radioisotopes/metabolism , Oryza/metabolism , Potassium Radioisotopes/metabolism , Radium/metabolism , Soil Pollutants, Radioactive/metabolism , Cesium Radioisotopes/analysis , India , Lead Radioisotopes/analysis , Potassium Radioisotopes/analysis , Radium/analysis , Soil Pollutants, Radioactive/analysis
18.
Radiat Prot Dosimetry ; 153(1): 56-63, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22683618

ABSTRACT

Four 220 MWe pressurised heavy water reactors are under operation at Kaiga in the state of Karnataka in India. Environmental radiological survey of the surrounding areas of the Kaiga site is carried out by Bhabha Atomic Research Centre, Mumbai. The estimated dose to the members of the public due to ingestion of radioactive isotope of potassium, a natural radionuclide, in the surroundings of the Kaiga site is 136 µSv (13.6 mrem) per year. The value indicates that the dose to the public due to operation of the nuclear reactors in Kaiga is insignificant in comparison with the dose due to unavoidable natural radioactivity.


Subject(s)
Background Radiation , Diet , Food Contamination, Radioactive , Nuclear Reactors , Potassium Radioisotopes/analysis , Radiation Monitoring , Adult , Child , Humans , India
19.
Environ Monit Assess ; 185(4): 2887-94, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22821255

ABSTRACT

The atmosphere is an important pathway to be considered in assessment of the environmental impact of radioactivity releases from nuclear facilities. The estimation of concentration of released effluents in air and possible ground contamination needs an understanding of relevant atmospheric dispersion. This paper describes the meteorological characteristics of Narora Atomic Power Station (NAPS) Nuclear Power Project site by using the integral parameters developed by Allwine and Whiteman (Atmospheric Environment 28(4):713-721, 1994). Meteorological data measured during the period 2006-2010 were analysed. The integral quantities related to the occurrence of stagnation, recirculation and ventilation characteristics were studied for the NAPS site to assess the dilution potential of the atmosphere. Wind run and recirculation factors were calculated for a 24-h transport time using 5 years of hourly surface measurements of wind speed and direction. The occurrence of stagnation, recirculation and ventilation characteristics during 2006-2010 at the NAPS site is observed to be 33.8, 19.5 and 34.7 % of the time, respectively. The presence of strong winds with predominant wind direction NW and WNW during winter and summer seasons leads to higher ventilation (48.1 and 44.3 %) and recirculation (32.6 % of the summer season). The presence of more dispersed light winds during pre-winter season with predominant wind directions W and WNW results in more stagnation (59.7 % of the pre-winter season). Thus, this study will serve as an essential meteorological tool to understand the transport mechanism of atmospheric radioactive effluent release from any nuclear industry during the pre-operational as well as operational phase.


Subject(s)
Air Pollutants, Radioactive/analysis , Air Pollution, Radioactive/statistics & numerical data , Atmosphere/chemistry , Nuclear Power Plants , Radiation Monitoring , Ventilation
20.
Radiat Prot Dosimetry ; 149(3): 304-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21646248

ABSTRACT

Tritium content in air moisture, soil water, rain water and plant water samples collected around the Kaiga site, India was estimated and the scavenging ratio, wet deposition velocity and ratio of specific activities of tritium between soil water and air moisture were calculated and the results are interpreted. Scavenging ratio was found to vary from 0.06 to 1.04 with a mean of 0.46. The wet deposition velocity of tritium observed in the present study was in the range of 3.3E-03 to 1.1E-02 m s(-1) with a mean of 6.6E-03 m s(-1). The ratio of specific activity of tritium in soil moisture to that in air moisture ranged from 0.17 to 0.95 with a mean of 0.49. The specific activity of tritium in plant water in this study varied from 73 to 310 Bq l(-1). The present study is very useful for understanding the process and modelling of transfer of tritium through air/soil/plant system at the Kaiga site.


Subject(s)
Air Pollutants, Radioactive/analysis , Environmental Monitoring/methods , Tritium/analysis , Air , Algorithms , India , Models, Statistical , Nuclear Power Plants , Rain , Scintillation Counting , Seasons , Soil , Soil Pollutants, Radioactive , Time Factors , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...