Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Springerplus ; 4: 262, 2015.
Article in English | MEDLINE | ID: mdl-26090309

ABSTRACT

Batch experiments were conducted to study the sorption of uranium (U) onto soil in deionised water as a function of its dosage, temperature and humic acid (HA). Furthermore, soils were characterized for particle sizes in the form of sand (>63 µm), silt (>2-<63 µm) and clay (<2 µm). The textural analysis revealed that soils were admixture of mainly sand and silt along with a small abundance of clay. X-ray diffraction analysis indicates that clay factions ranging from 2.8 to 5% dominated by quartz and montmorillonite. Experimental results indicated that soil with high abundance of clays and low sand content has relatively high U sorption which could be due to availability of high exchange surfaces for metal ions. However, at low concentration of HA, sorption of U was maximum and thereby decreased as the HA concentration increased. The maximum sorption may be due to increase in the negative active surface sites on HA and further decrease could be attributed to saturation of sorption site and surface precipitation. Conversely, the thermodynamic data suggested that the sorption is spontaneous and enhanced at higher temperature.

2.
Springerplus ; 2: 530, 2013.
Article in English | MEDLINE | ID: mdl-24255833

ABSTRACT

The thermodynamic parameters viz. the standard free energy (∆Gº), Standard enthalpy change (∆Hº) and standard entropy change (∆Sº) were determined using the obtained values of distribution coefficient (kd) of U (VI) in two different types of soils (agricultural and undisturbed) by conducting a batch equilibrium experiment with aqueous media (groundwater and deionised water) at two different temperatures 25°C and 50°C. The obtained distribution coefficients (kd) values of U for undisturbed soil in groundwater showed about 75% higher than in agricultural soil at 25°C while in deionised water, these values were highly insignificant for both soils indicating that groundwater was observed to be more favorable for high surface sorption. At 50°C, the increased kd values in both soils revealed that solubility of U decreased with increasing temperature. Batch adsorption results indicated that U sorption onto soils was promoted at higher temperature and an endothermic and spontaneous interfacial process. The high positive values of ∆Sº for agricultural soil suggested a decrease in sorption capacity of U in that soil due to increased randomness at solid-solution interface. The low sorption onto agricultural soil may be due to presence of high amount of coarse particles in the form of sand (56%). Geochemical modeling predicted that mixed hydroxo-carbonato complexes of uranium were the most stable and abundant complexes in equilibrium solution during experimental.

SELECTION OF CITATIONS
SEARCH DETAIL
...