Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cluster Comput ; 26(3): 1949-1983, 2023.
Article in English | MEDLINE | ID: mdl-36105649

ABSTRACT

Extant sequential wrapper-based feature subset selection (FSS) algorithms are not scalable and yield poor performance when applied to big datasets. Hence, to circumvent these challenges, we propose parallel and distributed hybrid evolutionary algorithms (EAs) based wrappers under Apache Spark. We propose two hybrid EAs based on the Binary Differential Evolution (BDE), and Binary Threshold Accepting (BTA), namely, (i) Parallel Binary Differential Evolution and Threshold Accepting (PB-DETA), where BDE and BTA work in tandem in every iteration, and (ii) its ablation variant, Parallel Binary Threshold Accepting and Differential Evolution (PB-TADE). Here, BTA is invoked to enhance the search capability and avoid premature convergence of BDE. For comparison purposes, we also parallelized two state-of-the-art algorithms: adaptive DE (ADE) and permutation based DE (DE-FSPM), and named them PB-ADE and P-DE-FSPM respectively. Throughout, logistic regression (LR) is employed to compute the fitness function, namely, area under the receiver operator characteristic curve (AUC). The effectiveness of the proposed algorithms is tested over the five big datasets of varying dimensions. It is noteworthy that the PB-TADE turned out to be statistically significant than the rest. All the algorithms have shown the repeatability property. The proposed parallel model attained a speedup of 2.2-2.9. We also reported feature subset with high AUC and least cardinality.

2.
Comput Biol Med ; 43(7): 889-99, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23746731

ABSTRACT

Keratin protein is ubiquitous in most vertebrates and invertebrates, and has several important cellular and extracellular functions that are related to survival and protection. Keratin function has played a significant role in the natural selection of an organism. Hence, it acts as a marker of evolution. Much information about an organism and its evolution can therefore be obtained by investigating this important protein. In the present study, Keratin sequences were extracted from public data repositories and various important sequential, structural and physicochemical properties were computed and used for preparing the dataset. The dataset containing two classes, namely mammals (Class-1) and non-mammals (Class-0), was prepared, and rigorous classification analysis was performed. To reduce the complexity of the dataset containing 56 parameters and to achieve improved accuracy, feature selection was done using the t-statistic. The 20 best features (parameters) were selected for further classification analysis using computational algorithms which included SVM, KNN, Neural Network, Logistic regression, Meta-modeling, Tree Induction, Rule Induction, Discriminant analysis and Bayesian Modeling. Statistical methods were used to evaluate the output. Logistic regression was found to be the most effective algorithm for classification, with greater than 96% accuracy using a 10-fold cross validation analysis. KNN, SVM and Rule Induction algorithms also were found to be efficacious for classification.


Subject(s)
Classification/methods , Computational Biology/methods , Keratins/chemistry , Support Vector Machine , Animals , Data Mining , Discriminant Analysis , Logistic Models , Mammals , Sequence Analysis, Protein
3.
Appl Biochem Biotechnol ; 170(6): 1263-81, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23657902

ABSTRACT

Standard molecular experimental methodologies and mathematical procedures often fail to answer many phylogeny and classification related issues. Modern artificial intelligent-based techniques, such as radial basis function, genetic algorithm, artificial neural network, and support vector machines are of ample potential in this regard. Reliance on a large number of essential parameters will aid in enhanced robustness, reliability, and better accuracy as opposed to single molecular parameter. This study was conducted with dataset of computed protein physicochemical properties belonging to 20 different bacterial genera. A total of 57 sequential and structural parameters derived from protein sequences were considered for the initial classification. Feature selection based techniques were employed to find out the most important features influencing the dataset. Various amino acids, hydrophobicity, relative sulfur percentage, and codon number were selected as important parameters during the study. Comparative analyses were performed applying RapidMiner data mining platform. Support vector machine proved to be the best method with maximum accuracy of more than 91%.


Subject(s)
Artificial Intelligence , Bacteria/classification , Bacteria/enzymology , Bacterial Typing Techniques/methods , Protein Kinases/chemistry , Protein Kinases/metabolism , Sequence Analysis, Protein/methods , Algorithms , Amino Acid Sequence , Histidine Kinase , Molecular Sequence Data
4.
Bioinformation ; 3(3): 130-3, 2008.
Article in English | MEDLINE | ID: mdl-19238250

ABSTRACT

Micro array data provides information of expression levels of thousands of genes in a cell in a single experiment. Numerous efforts have been made to use gene expression profiles to improve precision of tumor classification. In our present study we have used the benchmark colon cancer data set for analysis. Feature selection is done using t-statistic. Comparative study of class prediction accuracy of 3 different classifiers viz., support vector machine (SVM), neural nets and logistic regression was performed using the top 10 genes ranked by the t-statistic. SVM turned out to be the best classifier for this dataset based on area under the receiver operating characteristic curve (AUC) and total accuracy. Logistic Regression ranks as the next best classifier followed by Multi Layer Perceptron (MLP). The top 10 genes selected by us for classification are all well documented for their variable expression in colon cancer. We conclude that SVM together with t-statistic based feature selection is an efficient and viable alternative to popular techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...