Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 121: 111808, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33579452

ABSTRACT

This work aimed to evaluate the effects of encapsulated tocotrienols (TRF) and caffeic acid (CA) in water-in-oil-in-water (W/O/W) multiple nanoemulsion with cisplatin towards cancer cells. This work is important considering the limited efficacy of cisplatin due to tumour resistance, as well as its severe side effects. A549 and HEP G2 cancer cell lines were utilised for evaluating the efficacy of the encapsulated W/O/W while HEK 293 normal cell line was used for evaluating the toxicity. TRF, CA and CIS synergistically improved apoptosis in the late apoptotic phase in A549 and HEP G2 by 23.1% and 24.9%, respectively. The generation of ROS was enhanced using TRF:CA:CIS by 16.9% and 30.2% for A549 and HEP G2, respectively. Cell cycle analysis showed an enhanced cell arrest in the G0/G1 phase for both A549 and HEP G2. TRF, CA and CIS led to cell death in A549 and HEP G2. For HEK 293, ~33% cell viability was found when only CIS was used while >95% cell viability was observed when TRF, CA and CIS were used. This study demonstrates that the encapsulated TRF and CA in W/O/W with CIS synergistically improved therapeutic efficacy towards cancer cells, as well as lowered the toxicity effects towards normal cells.


Subject(s)
Antineoplastic Agents , Neoplasms , Tocotrienols , Antineoplastic Agents/pharmacology , Apoptosis , Caffeic Acids , Cell Line, Tumor , Cisplatin/pharmacology , HEK293 Cells , Humans , Tocotrienols/pharmacology
2.
Ultrason Sonochem ; 64: 104995, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32106064

ABSTRACT

In this work, the effects of thickeners and tonicity towards producing stable palm oil-based water-in-oil-in-water (W/O/W) multiple nanoemulsion using ultrasound and microfluidizer were investigated. Palm oil, Sucragel, polyglycerol polyricinoleate, Tween 80, Xanthan gum, and NaCl were used. W/O/W was formed under the optimized conditions of ultrasound at 40% amplitude and for 180 s of irradiation time, whereas for the microfluidizer, the optimized conditions were 350 bar and 8 cycles. This is the first work that successfully utilized Sucragel (oil-based thickener) in imparting enhanced stability in W/O/W. W/O/W with isotonic stabilization produced the lowest change in the mean droplet diameter (MDD), NaCl concentration, and water content by 1.5%, 2.6%, and 0.4%, respectively, due to reduced water movement. The final optimized W/O/W possessed MDD and dispersity index of 175.5 ± 9.8 and 0.232 ± 0.012, respectively. The future direction of formulating stable W/O/W would be by employing oil phase thickeners and isotonicity. The observed ~12 times lesser energy consumed by ultrasound than microfluidizer to generate a comparable droplet size of ~235 nm, further confirms its potential in generating the droplets energy-efficiently.

3.
Ultrason Sonochem ; 52: 353-363, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30555038

ABSTRACT

This study aimed to formulate a stable palm oil-based water-in-oil (W/O) nano-emulsion. Emphasis was placed on the effects of polyglycerol polyricinoleate (PGPR), medium chain triglyceride (MCT), lecithin and sodium chloride (NaCl) addition towards the stability of nano-emulsion. Among the performed analyses were mean droplet diameter (MDD), dispersity index (DI), critical micelle concentration (CMC), lipid peroxidation, viscosity, sedimentation index (SI) and surface morphology. The most stable optimized palm oil-based W/O nano-emulsion was produced using 61.25 wt% of palm oil, 26.25 wt% of MCT, 2.5 wt% of PGPR and 10 wt% of water (0.5 M of NaCl). The MDD and DI of the obtained W/O nano-emulsion were 143.1 ±â€¯8.8 and 0.131 ±â€¯0.094, respectively. After 2 weeks, no sedimentation was observed in W/O nano-emulsion with MDD and DI were 151.2 ±â€¯6.5 nm and 0.156 ±â€¯0.025 respectively. This study clearly found that polyricinoleate non-polar fatty acids of PGPR bound to non-polar fatty acids of palm oil through van der Waals intermolecular forces. While, polyglycerol polar head of PGPR interacts with water molecules through hydrogen bonding, as well as by the bound glyceride units of palm oil. The addition of NaCl further reduced MDD by 70 nm and improved the stability of nano-emulsion through electrostatic and steric repulsions attributed to the dissociation of Na+ and Cl- ions. This study aids to widen the knowledge and interest on the utilization of palm oil for the generation of W/O nano-emulsion, as well as to better understand the interaction between palm oil and PGPR/NaCl in producing nano-emulsion.

SELECTION OF CITATIONS
SEARCH DETAIL
...