Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 7(12): 5749-5761, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34781679

ABSTRACT

In vitro engineering of salivary glands relies on the availability of synthetic matrices presenting essential cell-instructive signals to guide tissue growth. Here, we describe a biomimetic, hyaluronic acid (HA)-based hydrogel platform containing covalently immobilized bioactive peptides derived from perlecan domain IV (TWSKV), laminin-111 (YIGSR, IKVAV), and fibronectin (RGDSP). The HA network was established by the thiol/acrylate reaction, and bioactive peptides were conjugated to the network with high efficiency without significantly altering the mechanical property of the matrix. When encapsulated as single cells in peptide-modified HA hydrogels, human salivary gland stem/progenitor cells (hS/PCs) spontaneously organized into multicellular spheroids with close cell-cell contacts. Conjugation of RGDSP and TWSKV signals in HA gels significantly accelerated cell proliferation, with the largest spheroids observed in RGDSP-tagged gels. Peptide conjugation did not significantly alter the expression of acinar (AMY1), ductal (TFCP2L1), and progenitor (KRT14) markers at the mRNA level. Characterization of three-dimensional (3D) cultures by immunocytochemistry showed positive staining for keratin-5 (K5), keratin-14 (K14), integrin-ß1, and α-amylase under all culture conditions, confirming the maintenance of the secretory progenitor cell population. Two-dimensional (2D) adhesion studies revealed that integrin-ß1 played a key role in facilitating cell-matrix interaction in gels with RGDSP, IKVAV, and TWSKV signals. Overall, conjugation of the RGDSP peptide to HA gels improved cell viability, accelerated the formation of epithelial spheroids, and promoted the expansion of the progenitor cell population in 3D. This work represents an essential first step toward the development of an engineered salivary gland.


Subject(s)
Amylases , Hydrogels , Humans , Hyaluronic Acid , Salivary Glands , Stem Cells
2.
ACS Biomater Sci Eng ; 7(9): 4305-4317, 2021 09 13.
Article in English | MEDLINE | ID: mdl-33635635

ABSTRACT

There is a critical need for the establishment of an engineered model of the vocal fold epithelium that can be used to gain understanding of its role in vocal fold health, disease, and facilitate the development of new treatment options. Toward this goal, we isolated primary vocal fold epithelial cells (VFECs) from healthy porcine larynxes and used them within passage 3. Culture-expanded VFECs expressed the suprabasal epithelial marker cytokeratin 13 and intercellular junctional proteins occludin, E-cadherin, and zonula occludens-1. To establish the engineered model, we cultured VFECs on a hyaluronic acid-derived synthetic basement membrane displaying fibronectin-derived integrin-binding peptide (RGDSP) and/or laminin 111-derived syndecan-binding peptide AG73 (RKRLQVQLSIRT). Our results show that matrix stiffness and composition cooperatively regulate the adhesion, proliferation, and stratification of VFECs. Cells cultured on hydrogels with physiological stiffness (elastic shear modulus, G' = 1828 Pa) adopted a cobblestone morphology with close cell-cell contacts, whereas those on softer matrices (G' = 41 Pa) were spindle shaped with extensive intracellular stress fibers. The development of stratified epithelium with proliferating basal cells and additional (1-2) suprabasal layers requires the presence of both RGDSP and AG73 peptide signals. Supplementation of cytokines produced by vimentin positive primary porcine vocal fold fibroblasts in the VFEC culture led to the establishment of 4-5 distinct cell layers. The engineered vocal fold epithelium resembled native tissue morphologically; expressed cytokeratin 13, mucin 1, and tight/adherens junction markers; and secreted basement membrane proteins collagen IV and laminin 5. Collectively, our results demonstrate that stiffness matching, cell-matrix engagement, and paracrine signaling cooperatively contribute to the stratification of VFECs. The engineered epithelium can be used as a versatile tool for investigations of genetic and molecular mechanisms in vocal fold health and disease.


Subject(s)
Hydrogels , Vocal Cords , Animals , Epithelial Cells , Epithelium , Hyaluronic Acid , Swine
3.
ACS Macro Lett ; 9(9): 1369-1375, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-35638624

ABSTRACT

A new technique is described for the construction of core-shell microfibers for biomedical applications. Fibrous scaffolds were fabricated by electrospinning, followed by covalent layer-by-layer deposition based on the rapid bioorthogonal reaction between s-tetrazines (Tz) and trans-cyclooctenes (TCOs). Electrospun poly(ε-caprolactone) (PCL) scaffolds were subjected to surface modifications to install tetrazine groups. The scaffolds were iteratively submerged in aqueous solutions of TCO-modified hyaluronic acid (HA-TCO) and tetrazine-modified hyaluronic acid (HA-Tz), resulting in the controlled growth of a cross-linked HA gel around individual microfibers. Integrin-binding motifs were covalently attached to the surface of the microfibers using TCO-conjugated RGD peptide. The scaffolds fostered the attachment and growth of primary porcine vocal fold fibroblasts without a significant induction of the myofibroblast phenotype. Stimulation with transforming growth factor beta (TGF-ß) moderately enhanced fibroblast activation, and inhibition of the Rho/ROCK signaling pathway using Y27632 further decreased the expression of myofibroblastic markers. The bioorthogonally assembled scaffolds with a stiff PCL core and a soft HA shell may find application as therapeutic implants for the treatment of vocal fold scarring.

4.
ACS Appl Mater Interfaces ; 10(31): 26016-26027, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30015482

ABSTRACT

Chemical modification of engineered microenvironments surrounding living cells represents a means for directing cellular behaviors through cell-matrix interactions. Presented here is a temporally controlled method for modulating the properties of biomimetic, synthetic extracellular matrices (ECM) during live cell culture employing the rapid, bioorthogonal tetrazine ligation with trans-cyclooctene (TCO) dienophiles. This approach is diffusion-controlled, cytocompatible, and does not rely on light, catalysts, or other external triggers. Human bone-marrow-derived mesenchymal stem cells (hMSCs) were initially entrapped in a hydrogel prepared using hyaluronic acid carrying sulfhydryl groups (HA-SH) and a hydrophilic polymer bearing both acrylate and tetrazine groups (POM-AT). Inclusion of a matrix metalloprotease (MMP)-degradable peptidic cross-linker enabled hMSC-mediated remodeling of the synthetic environment. The resultant network displayed dangling tetrazine groups for subsequent conjugation with TCO derivatives. Two days later, the stiffness of the matrix was increased by adding chemically modified HA carrying multiple copies of TCO (HA-TCO) to the hMSC growth media surrounding the cell-laden gel construct. In response, cells developed small processes radially around the cell body without a significant alteration of the overall shape. By contrast, modification of the 3D matrix with a TCO-tagged cell-adhesive motif caused the resident cells to undergo significant actin polymerization, changing from a rounded shape to spindle morphology with long cellular processes. After additional 7 days of culture in the growth media, quantitative analysis showed that, at the mRNA level, RGD tagging upregulated cellular expression of MMP1, but downregulated the expression of collagen I/III and tenascin C. RGD tagging, however, was not sufficient to induce the classic osteoblastic, chondrogenic, adipogenic, or fibroblastic/myofibroblastic differentiation. The modular approach allows facile manipulation of synthetic ECM to modulate cell behavior, thus potentially applicable to the engineering of functional tissues or tissue models.


Subject(s)
Stem Cells , Cell Culture Techniques , Cell Differentiation , Chondrogenesis , Extracellular Matrix , Humans , Hydrogels , Mesenchymal Stem Cells
5.
ACS Appl Mater Interfaces ; 8(28): 17915-26, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27322677

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is a well-studied biological process that takes place during embryogenesis, carcinogenesis, and tissue fibrosis. During EMT, the polarized epithelial cells with a cuboidal architecture adopt an elongated fibroblast-like morphology. This process is accompanied by the expression of many EMT-specific molecular markers. Although the molecular mechanism leading to EMT has been well-established, the effects of matrix topography and microstructure have not been clearly elucidated. Synthetic scaffolds mimicking the meshlike structure of the basement membrane with an average fiber diameter of 0.5 and 5 µm were produced via the electrospinning of poly(ε-caprolactone) (PCL) and were used to test the significance of fiber diameter on EMT. Cell-adhesive peptide motifs were conjugated to the fiber surface to facilitate cell attachment. Madin-Darby Canine Kidney (MDCK) cells grown on these substrates showed distinct phenotypes. On 0.5 µm substrates, cells grew as compact colonies with an epithelial phenotype. On 5 µm scaffolds, cells were more individually dispersed and appeared more fibroblastic. Upon the addition of hepatocyte growth factor (HGF), an EMT inducer, cells grown on the 0.5 µm scaffold underwent pronounced scattering, as evidenced by the alteration of cell morphology, localization of focal adhesion complex, weakening of cell-cell adhesion, and up-regulation of mesenchymal markers. In contrast, HGF did not induce a pronounced scattering of MDCK cells cultured on the 5.0 µm scaffold. Collectively, our results show that the alteration of the fiber diameter of proteins found in the basement membrane may create enough disturbances in epithelial organization and scattering that might have important implications in disease progression.


Subject(s)
Biomimetic Materials/chemistry , Epithelial Cells/cytology , Epithelial-Mesenchymal Transition/physiology , Tissue Scaffolds , Animals , Cell Adhesion/physiology , Cell Adhesion Molecules/physiology , Cell Growth Processes/drug effects , Cell Growth Processes/physiology , Cellular Microenvironment/physiology , Dogs , Epithelial Cells/drug effects , Epithelial-Mesenchymal Transition/drug effects , Hepatocyte Growth Factor/pharmacology , Madin Darby Canine Kidney Cells , Polyesters/chemistry
6.
Biomater Sci ; 4(4): 592-604, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26878077

ABSTRACT

The salivary gland is a complex, secretory tissue that produces saliva and maintains oral homeostasis. Radiation induced salivary gland atrophy, manifested as "dry mouth" or xerostomia, poses a significant clinical challenge. Tissue engineering recently has emerged as an alternative, long-term treatment strategy for xerostomia. In this review, we summarize recent efforts towards the development of functional and implantable salivary glands utilizing designed polymeric substrates or synthetic matrices/scaffolds. Although the in vitro engineering of a complex implantable salivary gland is technically challenging, opportunities exist for multidisciplinary teams to assemble implantable and secretory tissue modules by combining stem/progenitor cells found in the adult glands with biomimetic and cell-instructive materials.


Subject(s)
Biocompatible Materials/chemistry , Regeneration/physiology , Salivary Gland Diseases/therapy , Salivary Glands/physiopathology , Stem Cells/cytology , Tissue Engineering/methods , Adult , Biocompatible Materials/pharmacology , Humans , Salivary Glands/chemistry , Salivary Glands/growth & development , Stem Cells/chemistry , Xerostomia/physiopathology
7.
Biomaterials ; 58: 103-11, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25941787

ABSTRACT

Given the rise of antibiotic resistant microbes, genetic vaccination is a promising prophylactic strategy that enables rapid design and manufacture. Facilitating this process is the choice of vector, which is often situationally-specific and limited in engineering capacity. Furthermore, these shortcomings are usually tied to an incomplete understanding of the structure-function relationships driving vector-mediated gene delivery. Building upon our initial report of a hybrid bacterial-biomaterial gene delivery vector, a comprehensive structure-function assessment was completed using a class of mannosylated poly(beta-amino esters). Through a top-down screening methodology, an ideal polymer was selected on the basis of gene delivery efficacy and then used for the synthesis of a stratified molecular weight polymer library. By eliminating contributions of polymer chemical background, we were able to complete an in-depth assessment of gene delivery as a function of (1) polymer molecular weight, (2) relative mannose content, (3) polymer-membrane biophysical properties, (4) APC uptake specificity, and (5) serum inhibition. In summary, the flexibility and potential of the hybrid design featured in this work highlights the ability to systematically probe vector-associated properties for the development of translational gene delivery candidates.


Subject(s)
Gene Transfer Techniques , Genetic Vectors , Mannose/chemistry , Animals , Antigen-Presenting Cells , Biocompatible Materials/chemistry , Biophysics , Escherichia coli/metabolism , Esters , Genetic Therapy , Magnetic Resonance Spectroscopy , Mice , Molecular Weight , Polymers/chemistry , Transfection
8.
Biomacromolecules ; 16(5): 1534-41, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25848953

ABSTRACT

Antigen presenting cell (APC) gene delivery is a promising avenue for modulating immunological outcomes toward a desired state. Recently, our group developed a delivery methodology to elicit targeted and elevated levels of APC-mediated gene delivery. During these initial studies, we observed APC-specific structure-function relationships with the vectors used during gene delivery that differ from current non-APC cell lines, thus, emphasizing a need to re-evaluate vector-associated parameters in the context of APC gene transfer. Thus, we describe the synthesis and characterization of a second-generation mannosylated poly(ß-amino ester) library stratified by molecular weight. To better understand the APC-specific structure-function relationships governing polymeric gene delivery, the library was systematically characterized by (1) polymer molecular weight, (2) relative mannose content, (3) polyplex biophysical properties, and (4) gene delivery efficacy. In this library, polymers with the lowest molecular weight and highest relative mannose content possessed gene delivery transfection efficiencies as good as or better than commercial controls. Among this group, the most effective polymers formed the smallest polymer-plasmid DNA complexes (∼300 nm) with moderate charge densities (<10 mV). This convergence in polymer structure and polyplex biophysical properties suggests a unique mode of action and provides a framework within which future APC-targeting polymers can be designed.


Subject(s)
Antigen-Presenting Cells/drug effects , Gene Transfer Techniques , Genetic Therapy , Polymers/chemistry , Antigen-Presenting Cells/immunology , DNA/chemistry , Humans , Mannose/chemistry , Plasmids/chemistry , Polymers/chemical synthesis , Polymers/therapeutic use , Structure-Activity Relationship
9.
Mol Pharm ; 12(3): 846-56, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25625426

ABSTRACT

Genetic vaccination is predicated on the underlying principle that diseases can be prevented by the controlled introduction of genetic material encoding antigenic proteins from pathogenic organisms to elicit the formation of protective immune responses. Driving this process is the choice of carrier that is responsible for navigating the obstacles associated with gene delivery. In this work, we expand upon a novel class of hybrid biosynthetic gene delivery vectors that are composed of a biomaterial outer coating and a bacterial (Escherichia coli) inner core. Specifically, a series of newly developed biodegradable cationic polylactides (CPLAs) and their PEGylated variants were selected to investigate the role of low polydispersity index (PDI), charge density, and PEGylation upon hybrid vector assembly and gene delivery efficacy. Upon assembly, hybrid vectors mediated increased gene delivery beyond that of the individual bacterial vector in isolation, including assays with increasing medium protein content to highlight shielding properties afforded by the PEG-functionalized CPLA component. Furthermore, after extensive characterization of surface deposition of the polymer, results prompted a new model for describing hybrid vector assembly that includes cellular coating and penetration of the CPLA component. In summary, these results provide new options and insight toward the assembly and application of next-generation hybrid biosynthetic gene delivery vectors.


Subject(s)
Gene Transfer Techniques , Genetic Vectors , Polyesters/chemistry , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Cations/chemical synthesis , Cations/chemistry , Cell Line , Gene Transfer Techniques/adverse effects , Genetic Engineering , Magnetic Resonance Spectroscopy , Materials Testing , Mice , Models, Chemical , Polyesters/chemical synthesis , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Transfection , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics
10.
Biomaterials ; 37: 333-44, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25453962

ABSTRACT

Given the rise of antibiotic resistance and other difficult-to-treat diseases, genetic vaccination is a promising preventative approach that can be tailored and scaled according to the vector chosen for gene delivery. However, most vectors currently utilized rely on ubiquitous delivery mechanisms that ineffectively target important immune effectors such as antigen presenting cells (APCs). As such, APC targeting allows the option for tuning the direction (humoral vs cell-mediated) and strength of the resulting immune responses. In this work, we present the development and assessment of a library of mannosylated poly(beta-amino esters) (PBAEs) that represent a new class of easily synthesized APC-targeting cationic polymers. Polymeric characterization and assessment methodologies were designed to provide a more realistic physiochemical profile prior to in vivo evaluation. Gene delivery assessment in vitro showed significant improvement upon PBAE mannosylation and suggested that mannose-mediated uptake and processing influence the magnitude of gene delivery. Furthermore, mannosylated PBAEs demonstrated a strong, efficient, and safe in vivo humoral immune response without use of adjuvants when compared to genetic and protein control antigens. In summary, the gene delivery effectiveness provided by mannosylated PBAE vectors offers specificity and potency in directing APC activation and subsequent immune responses.


Subject(s)
Antigen-Presenting Cells/immunology , Immunomodulation , Mannose/chemistry , Polymers/chemistry , Animals , Female , Fluorescence , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Immunization , Mice, Inbred BALB C , Models, Animal , Polymers/chemical synthesis , Transfection
11.
Proc Natl Acad Sci U S A ; 111(34): 12360-5, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25114239

ABSTRACT

Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy.


Subject(s)
Genetic Engineering/trends , Genetic Therapy/trends , Genetic Vectors , Animals , Antigen-Presenting Cells/immunology , Cell Line , Escherichia coli/genetics , Female , Gene Transfer Techniques/trends , Immunization , Mice , Mice, Inbred BALB C , Models, Animal , Ovalbumin/immunology , Vaccines, DNA/genetics
12.
Mol Pharm ; 10(11): 4082-98, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24093932

ABSTRACT

A key end goal of gene delivery research is to develop clinically relevant vectors that can be used to combat elusive diseases such as AIDS. Despite promising engineering strategies, efficiency and ultimately gene modulation efficacy of nonviral vectors have been hindered by numerous in vitro and in vivo barriers that have resulted in subviral performance. In this perspective, we concentrate on the gene delivery barriers associated with the two most common classes of nonviral vectors, cationic-based lipids and polymers. We present the existing delivery barriers and summarize current vector-specific strategies to overcome said barriers.


Subject(s)
Gene Transfer Techniques , Genetic Vectors , Genetic Therapy , Lipids/chemistry , Polymers/chemistry
13.
Mol Pharm ; 10(11): 4301-8, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24093973

ABSTRACT

Improvements to bacterial vectors have resulted in nonviral gene therapy vehicles that are easily prepared and can achieve high levels of transfection efficacy. However, these vectors are plagued by potential cytotoxicity and immunogenicity, prompting means of attenuation to reduce unwanted biological outcomes while maintaining transfection efficiency. In this study, listeriolysin O (LLO) producing Escherichia coli BL21(DE3) strains were pretreated with polymyxin B (PLB), a pore-forming antibiotic, and tested as a delivery vector for gene transfer to a murine RAW264.7 macrophage cell line using a 96-well high-throughput assay. PLB treatment resulted in statistically significant higher levels of gene delivery and lower cytotoxicity. The results suggest a fine balance between bacterial cellular damage, heightened gene and protein release, and increased mammalian cell gene delivery. Overall, the approach presented provides a simple and effective way to enhance bacterial gene delivery while simultaneously reducing unwanted outcomes as a function of using a biological vector.


Subject(s)
Bacterial Toxins/metabolism , Heat-Shock Proteins/metabolism , Hemolysin Proteins/metabolism , Polymyxin B/pharmacology , Animals , Cell Line , Escherichia coli/drug effects , Escherichia coli/metabolism , Genetic Therapy , Humans , Mice
14.
Biomaterials ; 34(37): 9688-99, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24034497

ABSTRACT

Representing a new type of biodegradable cationic block copolymer, well-defined poly(ethylene glycol)-block-cationic polylactides (PEG-b-CPLAs) with tertiary amine-based cationic groups were synthesized by thiol-ene functionalization of an allyl-functionalized diblock precursor. Subsequently the application of PEG-b-CPLAs as biodegradable vectors for the delivery of plasmid DNAs (pDNAs) was investigated. Via the formation of PEG-b-CPLA:pDNA nanocomplexes by spontaneous electrostatic interaction, pDNAs encoding luciferase or enhanced green fluorescent protein were successfully delivered to four physiologically distinct cell lines (including macrophage, fibroblast, epithelial, and stem cell). Formulated nanocomplexes demonstrated high levels of transfection with low levels of cytotoxicity and hemolysis when compared to a positive control. Biophysical characterization of charge densities of nanocomplexes at various polymer:pDNA weight ratios revealed a positive correlation between surface charge and gene delivery. Nanocomplexes with high surface charge densities were utilized in an in vitro serum gene delivery inhibition assay, and effective gene delivery was observed despite high levels of serum. Overall, these results help to elucidate the influence of charge, size, and PEGylation of nanocomplexes upon the delivery of nucleic acids in physiologically relevant conditions.


Subject(s)
DNA/administration & dosage , Plasmids/administration & dosage , Polyesters/chemistry , Polyethylene Glycols/chemistry , Animals , Cations/chemistry , Cell Line , Gene Transfer Techniques , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...