Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
IEEE Trans Med Imaging ; 37(3): 693-702, 2018 03.
Article in English | MEDLINE | ID: mdl-29533891

ABSTRACT

The purpose of this paper was to extend the extended cardiac-torso (XCAT) series of computational phantoms to include a detailed lung architecture including airways and pulmonary vasculature. Eleven XCAT phantoms of varying anatomy were used in this paper. The lung lobes and initial branches of the airways, pulmonary arteries, and veins were previously defined in each XCAT model. These models were extended from the initial branches of the airways and vessels to the level of terminal branches using an anatomically-based volume-filling branching algorithm. This algorithm grew the airway and vasculature branches separately and iteratively without intersecting each other using cylindrical models with diameters estimated by order-based anatomical measurements. Geometrical features of the extended branches were compared with the literature anatomy values to quantitatively evaluate the models. These features include branching angle, length to diameter ratio, daughter to parent diameter ratio, asymmetrical branching pattern, diameter, and length ratios. The XCAT phantoms were then used to simulate CT images to qualitatively compare them with the original phantom images. The proposed growth model produced 46369 ± 12521 airways, 44737 ± 11773 arteries, and 39819 ± 9988 veins to the XCAT phantoms. Furthermore, the growth model was shown to produce asymmetrical airway, artery, and vein networks with geometrical attributes close to morphometry and model based studies. The simulated CT images of the phantoms were judged to be more realistic, including more airways and pulmonary vessels compared with the original phantoms. Future work will seek to add a heterogeneous parenchymal background into the XCAT lungs to make the phantoms even more representative of human anatomy, paving the way towards the use of XCAT models as a tool to virtually evaluate the current and emerging medical imaging technologies.


Subject(s)
Imaging, Three-Dimensional/methods , Lung , Phantoms, Imaging , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Adult , Algorithms , Female , Humans , Lung/anatomy & histology , Lung/blood supply , Lung/diagnostic imaging , Male
2.
J Digit Imaging ; 26(1): 109-14, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22422436

ABSTRACT

A biplane correlation (BCI) imaging system obtains images that can be viewed in stereo, thereby minimizing overlapping structures. This study investigated whether using stereoscopic visualization provides superior lung nodule detection compared to standard postero-anterior (PA) image display. Images were acquired at two oblique views of ±3° as well as at a standard PA position from 60 patients. Images were processed using optimal parameters and displayed on a stereoscopic display. The PA image was viewed in the standard format, while the oblique views were paired to provide a stereoscopic view of the subject. A preliminary observer study was performed with four radiologists who viewed and scored the PA image then viewed and scored the BCI stereoscopic image. The BCI stereoscopic viewing of lung nodules resulted in 71 % sensitivity and 0.31 positive predictive value (PPV) index compared to PA results of 86 % sensitivity and 0.26 PPV index. The sensitivity for lung nodule detection with the BCI stereoscopic system was reduced by 15 %; however, the total number of false positives reported was reduced by 35 % resulting in an improved PPV index of 20 %. The preliminary results indicate observer dependency in terms of relative advantage of either system in the detection of lung nodules, but overall equivalency of the two methods with promising potential for BCI as an adjunct diagnostic technique.


Subject(s)
Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Solitary Pulmonary Nodule/diagnostic imaging , Tomography, X-Ray Computed/methods , Humans , Imaging, Three-Dimensional , Predictive Value of Tests , ROC Curve , Radiation Dosage , Sensitivity and Specificity
3.
Phys Med Biol ; 56(16): 5099-118, 2011 Aug 21.
Article in English | MEDLINE | ID: mdl-21775791

ABSTRACT

The detective quantum efficiency (DQE) and the effective DQE (eDQE) are relevant metrics of image quality for digital radiography detectors and systems, respectively. The current study further extends the eDQE methodology to technique optimization using a new metric of the effective dose efficiency (eDE), reflecting both the image quality as well as the effective dose (ED) attributes of the imaging system. Using phantoms representing pediatric, adult and large adult body habitus, image quality measurements were made at 80, 100, 120 and 140 kVp using the standard eDQE protocol and exposures. ED was computed using Monte Carlo methods. The eDE was then computed as a ratio of image quality to ED for each of the phantom/spectral conditions. The eDQE and eDE results showed the same trends across tube potential with 80 kVp yielding the highest values and 120 kVp yielding the lowest. The eDE results for the pediatric phantom were markedly lower than the results for the adult phantom at spatial frequencies lower than 1.2-1.7 mm(-1), primarily due to a correspondingly higher value of ED per entrance exposure. The relative performance for the adult and large adult phantoms was generally comparable but affected by kVps. The eDE results for the large adult configuration were lower than the eDE results for the adult phantom, across all spatial frequencies (120 and 140 kVp) and at spatial frequencies greater than 1.0 mm(-1) (80 and 100 kVp). Demonstrated for chest radiography, the eDE shows promise as an application-specific metric of imaging performance, reflective of body habitus and radiographic technique, with utility for radiography protocol assessment and optimization.


Subject(s)
Radiation Dosage , Radiographic Image Enhancement/methods , Radiographic Image Enhancement/standards , Adult , Humans , Infant , Male , Phantoms, Imaging , Quality Control , Radiography, Thoracic
6.
AJR Am J Roentgenol ; 193(4): 1141-7, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19770340

ABSTRACT

OBJECTIVE: The objective of our study was to determine, using an anthropomorphic phantom, whether patients are subject to variable radiation doses based on scanner assignment for common body CT studies. MATERIALS AND METHODS: Twenty metal oxide semiconductor field effect transistor dosimeters were placed in a medium-sized anthropomorphic phantom of a man. Pulmonary embolism and chest, abdomen, and pelvis protocols were used to scan the phantom three times with GE Healthcare scanners in four configurations and one 64-MDCT Siemens Healthcare scanner. Organ doses were averaged, and effective doses were calculated with weighting factors. RESULTS: The mean effective doses for the pulmonary embolism protocol ranged from 9.9 to 18.5 mSv and for the chest, abdomen, and pelvis protocol from 6.7 to 18.5 mSv. For the pulmonary embolism protocol, the mean effective dose from the Siemens Healthcare 64-MDCT scanner was significantly lower than that from the 16- and 64-MDCT GE Healthcare scanners (p < 0.001). The mean effective dose from the GE 4-MDCT scanner was significantly lower than that for the GE 16-MDCT scanner (p < 0.001) but not the GE 64-MDCT scanner (p = 0.02). For the chest, abdomen, and pelvis protocol, all mean effective doses from the GE scanners were significantly different from one another (p < 0.001), the lowest mean effective dose being found with use of a single-detector CT scanner and the highest with a 4-MDCT scanner. For the chest, abdomen, and pelvis protocols, the difference between the mean effective doses from the GE Healthcare and Siemens Healthcare 64-MDCT scanners was not statistically significant (p = 0.89). CONCLUSION: According to phantom data, patients are subject to different radiation exposures for similar body CT protocols depending on scanner assignment. In general, doses are lowest with use of 64-MDCT scanners.


Subject(s)
Body Burden , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Whole-Body Counting/methods , Adult , Equipment Design , Equipment Failure Analysis , Humans , Male , Phantoms, Imaging , Relative Biological Effectiveness
7.
Med Phys ; 36(8): 3806-17, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19746814

ABSTRACT

Prior studies on performance evaluation of digital radiographic systems have primarily focused on the assessment of the detector performance alone. However, the clinical performance of such systems is also substantially impacted by magnification, focal spot blur, the presence of scattered radiation, and the presence of an antiscatter grid. The purpose of this study is to evaluate an experimental methodology to assess the performance of a digital radiographic system, including those attributes, and to propose a new metric, effective detective quantum efficiency (eDQE), a candidate for defining the efficiency or speed of digital radiographic imaging systems. The study employed a geometric phantom simulating the attenuation and scatter properties of the adult human thorax and a representative indirect flat-panel-based clinical digital radiographic imaging system. The noise power spectrum (NPS) was derived from images of the phantom acquired at three exposure levels spanning the operating range of the clinical system. The modulation transfer function (MTF) was measured using an edge device positioned at the surface of the phantom, facing the x-ray source. Scatter measurements were made using a beam stop technique. The eDQE was then computed from these measurements, along with measures of phantom attenuation and x-ray flux. The MTF results showed notable impact from the focal spot blur, while the NPS depicted a large component of structured noise resulting from use of an antiscatter grid. The eDQE was found to be an order of magnitude lower than the conventional DQE. At 120 kVp, eDQE(0) was in the 8%-9% range, fivefold lower than DQE(0) at the same technique. The eDQE method yielded reproducible estimates of the system performance in a clinically relevant context by quantifying the inherent speed of the system, that is, the actual signal to noise ratio that would be measured under clinical operating conditions.


Subject(s)
Radiographic Image Enhancement/methods , Humans , Mammography , Phantoms, Imaging , Scattering, Radiation , Time Factors
8.
Radiology ; 249(3): 926-37, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19011189

ABSTRACT

PURPOSE: To develop an experimental method for measuring the effective detective quantum efficiency (eDQE) of digital radiographic imaging systems and evaluate its use in select imaging systems. MATERIALS AND METHODS: A geometric phantom emulating the attenuation and scatter properties of the adult human thorax was employed to assess eight imaging systems in a total of nine configurations. The noise power spectrum (NPS) was derived from images of the phantom acquired at three exposure levels spanning the operating range of the system. The modulation transfer function (MTF) was measured by using an edge device positioned at the anterior surface of the phantom. Scatter measurements were made by using a beam-stop technique. All measurements, including those of phantom attenuation and estimates of x-ray flux, were used to compute the eDQE. RESULTS: The MTF results showed notable degradation owing to focal spot blur. Scatter fractions ranged between 11% and 56%, depending on the system. The eDQE(0) results ranged from 1%-17%, indicating a reduction of up to one order of magnitude and different rank ordering and performance among systems, compared with that implied in reported conventional detective quantum efficiency results from the same systems. CONCLUSION: The eDQE method was easy to implement, yielded reproducible results, and provided a meaningful reflection of system performance by quantifying image quality in a clinically relevant context. The difference in the magnitude of the measured eDQE and the ideal eDQE of 100% provides a great opportunity for improving the image quality of radiographic and mammographic systems while reducing patient dose.


Subject(s)
Radiographic Image Enhancement/instrumentation , Radiographic Image Enhancement/standards , Efficiency , Phantoms, Imaging , Radiography, Thoracic/standards , Scattering, Radiation
9.
Radiology ; 243(3): 785-95, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17517933

ABSTRACT

PURPOSE: To prospectively evaluate the recently introduced international standard method for measurement of the detective quantum efficiency (DQE) of digital radiography systems, in comparison with representative prior methods. MATERIALS AND METHODS: A recently introduced international standard method (International Electrotechnical Commission [IEC] 62220-1, 2003) for DQE measurement and two previously described DQE evaluation methods were considered. In addition to an overall comparison, evaluations of the following method factors were performed: beam quality, beam-limiting devices (apertures or collimators), noise power spectrum (NPS) analysis algorithms and parameters (area, region of interest size, background detrending), and modulation transfer function (MTF) test devices and methods. RESULTS: Overall, at low to middle frequencies, the IEC method yielded DQE estimates that were 3.3% and 6.5% lower than the values yielded by the two previous methods. Averaged over the frequency range of 1.5-2.5 mm(-1), the DQE estimate derived by using the IEC method was 7.1% lower and 12.4% higher than the estimates derived by using the other two methods. Results obtained with the two previous DQE evaluation methods agreed well (within 2.0%) in the low- to middle-frequency range but diverged by up to 10% at higher frequencies. When the DQE method factors were evaluated separately, the largest percentage deviations in DQE were associated with (in order of decreasing influence) the MTF analysis method ( approximately 11%), the beam limitation (about 7%-10%), the beam quality ( approximately 9%), and the NPS analysis method ( approximately 3%). CONCLUSION: Comparison of DQE estimates obtained by using the recently introduced international standard technique with those obtained by using prior methods revealed that the overall measurement method can affect the DQE estimate by as much as 12%. Findings further suggest that both beam limitation achieved by means of internal collimation (rather than external apertures) and use of a radio-opaque edge MTF device yield a more accurate estimation of the DQE.


Subject(s)
Equipment Failure Analysis/methods , Equipment Failure Analysis/standards , Internationality , Practice Guidelines as Topic , Radiographic Image Enhancement/instrumentation , Radiographic Image Enhancement/standards , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
10.
Radiology ; 241(3): 663-83, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17114619

ABSTRACT

There have been many remarkable advances in conventional thoracic imaging over the past decade. Perhaps the most remarkable is the rapid conversion from film-based to digital radiographic systems. Computed radiography is now the preferred imaging modality for bedside chest imaging. Direct radiography is rapidly replacing film-based chest units for in-department posteroanterior and lateral examinations. An exciting aspect of the conversion to digital radiography is the ability to enhance the diagnostic capabilities and influence of chest radiography. Opportunities for direct computer-aided detection of various lesions may enhance the radiologist's accuracy and improve efficiency. Newer techniques such as dual-energy and temporal subtraction radiography show promise for improved detection of subtle and often obscured or overlooked lung lesions. Digital tomosynthesis is a particularly promising technique that allows reconstruction of multisection images from a short acquisition at very low patient dose. Preliminary data suggest that, compared with conventional radiography, tomosynthesis may also improve detection of subtle lung lesions. The ultimate influence of these new technologies will, of course, depend on the outcome of rigorous scientific validation.


Subject(s)
Image Processing, Computer-Assisted/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/trends , Data Display , Humans , Scattering, Radiation , Subtraction Technique , X-Ray Intensifying Screens
11.
Med Phys ; 32(7): 2305-11, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16121586

ABSTRACT

As part of a larger evaluation we attempted to measure the detective quantum efficiency (DQE) of an amorphous silicon flat-panel detector using the method described in the International Electrotechnical Commission standard 62220-1 published in October 2003. To achieve the radiographic beam conditions specified in the standard, we purchased scientific-grade ultrahigh purity aluminum (99.999% purity, type-11999 alloy) filters in thicknesses ranging from 0.1 through 10.0 mm from a well-known, specialty metals supplier. Qualitative evaluation of flat field images acquired at 71 kV (RQA5 beam quality) with 21 mm of ultrahigh purity aluminum filtration demonstrated a low frequency mottle that was reproducible and was not observed when the measurement was repeated at 74 kV (RQA5 beam quality) with 21 mm of lower-purity aluminum (99.0% purity, type-1100 alloy) filtration. This finding was ultimately attributed to the larger grain size (approximately 1-2 mm) of high purity aluminum metal, which is a well-known characteristic, particularly in thicknesses greater than 1 mm. The impact of this low frequency mottle is to significantly overestimate the noise power spectrum (NPS) at spatial frequencies < or = 0.2 mm(-1), which in turn would cause an underestimation of the DQE in this range. A subsequent evaluation of ultrahigh purity aluminum, purchased from a second source, suggests, that reduced grain size can be achieved by the process of annealing. Images acquired with this sample demonstrated vertical striated nonuniformities that are attributed to the manufacturing method and which do not appear to appreciably impact the NPS at spatial frequencies > or = 0.5 mm(-1), but do result in an asymmetry in the x- and y-NPS at spatial frequencies < or = 0.2 mm(-1). Our observations of markedly visible nonuniformities in images acquired with high purity aluminum filtration suggest that the uniformity of filter materials should be carefully evaluated and taken into consideration when measuring the DQE.


Subject(s)
Equipment Failure Analysis/standards , Filtration/instrumentation , Filtration/standards , Radiographic Image Enhancement/instrumentation , Radiographic Image Enhancement/standards , Transducers , X-Ray Intensifying Screens/standards , Equipment Failure Analysis/methods , Guidelines as Topic , Internationality , Quality Assurance, Health Care/methods , Quality Assurance, Health Care/standards , Quantum Theory , Radiographic Image Enhancement/methods , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Technology Assessment, Biomedical
12.
Radiology ; 235(3): 940-9, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15845791

ABSTRACT

PURPOSE: To evaluate the scatter, dose, and effective detective quantum efficiency (DQE) performance of a slot-scan digital chest radiography system compared with that of a full-field digital radiography system. MATERIALS AND METHODS: Scatter fraction of a slot-scan system was measured for an anthropomorphic and a geometric phantom by using a posterior beam-stop technique at 117 and 140 kVp. Measurements were repeated with a full-field digital radiography system with and without a 13:1 antiscatter grid at 120 and 140 kVp. For both systems, the effective dose was measured on posteroanterior and lateral views for standard clinical techniques by using dosimeters embedded in a female phantom. The effective DQEs of the two systems were assessed by taking into account the scatter performance and the DQE of each system. The statistical significance of all the comparative differences was ascertained by means of t test analysis. RESULTS: The slot-scan system and the full-field system with grid yielded scatter fractions of 0.13-0.14 and 0.42-0.48 in the lungs and 0.30-0.43 and 0.69-0.78 in the mediastinum, respectively. The sum of the effective doses for posteroanterior and lateral views for the slot-scan system (0.057 mSv +/- 0.003 [+/- standard deviation]) was 34% lower than that for the full-field system (0.086 mSv +/- 0.001, P < .05) at their respective clinical peak voltages (140 and 120 kVp, respectively). The effective DQE of the slot-scan system was equivalent to that of the full-field system in the lung region but was 37% higher in the dense regions (P < .05). CONCLUSION: The slot-scan design leads to marked scatter reduction compared with the more conventional full-field geometries with a grid. The improved scatter performance of a slot-scan geometry can effectively compensate for low DQE and lead to improved image quality.


Subject(s)
Radiographic Image Enhancement , Radiography, Thoracic/standards , Phantoms, Imaging , Radiation Dosage , Radiography, Thoracic/methods
13.
Med Phys ; 32(7Part1): 2305-2311, 2005 Jul.
Article in English | MEDLINE | ID: mdl-28493576

ABSTRACT

As part of a larger evaluation we attempted to measure the detective quantum efficiency (DQE) of an amorphous silicon flat-panel detector using the method described in the International Electrotechnical Commission standard 62220-1 published in October 2003. To achieve the radiographic beam conditions specified in the standard, we purchased scientific-grade ultrahigh purity aluminum (99.999% purity, type-11999 alloy) filters in thicknesses ranging from 0.1 through 10.0 mm from a well-known, specialty metals supplier. Qualitative evaluation of flat field images acquired at 71 kV (RQA5 beam quality) with 21 mm of ultrahigh purity aluminum filtration demonstrated a low frequency mottle that was reproducible and was not observed when the measurement was repeated at 74 kV (RQA5 beam quality) with 21 mm of lower-purity aluminum (99.0% purity, type-1100 alloy) filtration. This finding was ultimately attributed to the larger grain size (approximately 1-2 mm) of high purity aluminum metal, which is a well-known characteristic, particularly in thicknesses greater than 1 mm. The impact of this low frequency mottle is to significantly overestimate the noise power spectrum (NPS) at spatial frequencies ⩽0.2mm-1, which in turn would cause an underestimation of the DQE in this range. A subsequent evaluation of ultrahigh purity aluminum, purchased from a second source, suggests, that reduced grain size can be achieved by the process of annealing. Images acquired with this sample demonstrated vertical striated nonuniformities that are attributed to the manufacturing method and which do not appear to appreciably impact the NPS at spatial frequencies ⩾0.5mm-1, but do result in an asymmetry in the x- and y-NPS at spatial frequencies ⩽0.2mm-1. Our observations of markedly visible nonuniformities in images acquired with high purity aluminum filtration suggest that the uniformity of filter materials should be carefully evaluated and taken into consideration when measuring the DQE.

14.
Med Phys ; 31(9): 2687-98, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15487752

ABSTRACT

Our purpose in this study was to evaluate the fundamental image quality characteristics of a new slot-scan digital chest radiography system (ThoraScan, Delft Imaging Systems/Nucletron, Veenendaal, The Netherlands). The linearity of the system was measured over a wide exposure range at 90, 117, and 140 kVp with added Al filtration. System uniformity and reproducibility were established with an analysis of images from repeated exposures. The modulation transfer function (MTF) was evaluated using an established edge method. The noise power spectrum (NPS) and the detective quantum efficiency (DQE) of the system were evaluated at the three kilo-voltages over a range of exposures. Scatter fraction (SF) measurements were made using a posterior beam stop method and a geometrical chest phantom. The system demonstrated excellent linearity, but some structured nonuniformities. The 0.1 MTF values occurred between 3.3-3.5 mm(-1). The DQE(0.15) and DQE(2.5) were 0.21 and 0.07 at 90 kVp, 0.18 and 0.05 at 117 kVp, and 0.16 and 0.03 at 140 kVp, respectively. The system exhibited remarkably lower SFs compared to conventional full-field systems with anti-scatter grid, measuring 0.13 in the lungs and 0.43 in the mediastinum. The findings indicated that the slot-scan design provides marked scatter reduction leading to high effective DQE (DQEeff) of the system and reduced patient dose required to achieve high image quality.


Subject(s)
Equipment Failure Analysis , Radiographic Image Enhancement/instrumentation , Radiography, Thoracic/instrumentation , Equipment Design , Humans , Phantoms, Imaging , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , Technology Assessment, Biomedical , Technology, Radiologic/instrumentation , Technology, Radiologic/methods
15.
Radiology ; 226(1): 221-30, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12511694

ABSTRACT

PURPOSE: To ascertain the optimum x-ray spectrum for chest radiography with a cesium iodide-amorphous silicon flat-panel detector. MATERIALS AND METHODS: End points for optimization included the ratio of tissue contrast to bone contrast and a figure of merit (FOM) equal to the square of the signal-to-noise ratio of tissue divided by incident exposure to the patient. Studies were conducted with both computer spectrum modeling and experimental measurement in narrow-beam and full-field exposure conditions for four tissue thicknesses (8-32 cm). Three parameters that affect spectra were considered: the atomic number (Z) of filter material (Z = 13, 26, 29, 42, 50, 56, 64, 74, and 82), kilovoltage (from 50 to 150 kVp), and filter thickness (from 0.25 to 2.00 half-value layer [HVL]). RESULTS: Computer modeling and narrow-beam experimental data showed similar trends for the full range of parameters evaluated. Spectrum model results showed that copper filtration at 120 kVp or more was optimum for FOM. The ratio of contrasts showed a trend to be higher with higher kilovoltage and only a minor variation with filter material. Full-field experimental results, which reflect the added contribution of x-ray scatter, differed in magnitude but not trends from the narrow-beam data in all cases except the ratio of contrasts in the mediastinum. CONCLUSION: The best performance overall, including both FOM and ratio of contrasts, was at 120 kVp with 1-HVL copper filtration (0.2 mm). With this beam spectrum and an increase in tube output (ie, milliampere seconds) of about 50%, a chest radiograph can be obtained with image quality approximately equal to that with a conventional spectrum but with about 25% less patient exposure.


Subject(s)
Radiography, Thoracic/methods , Cesium , Computer Simulation , Humans , Iodides , Silicon
SELECTION OF CITATIONS
SEARCH DETAIL
...