Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 82019 11 04.
Article in English | MEDLINE | ID: mdl-31682229

ABSTRACT

Alexander disease (AxD) is a fatal neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP), which supports the structural integrity of astrocytes. Over 70 GFAP missense mutations cause AxD, but the mechanism linking different mutations to disease-relevant phenotypes remains unknown. We used AxD patient brain tissue and induced pluripotent stem cell (iPSC)-derived astrocytes to investigate the hypothesis that AxD-causing mutations perturb key post-translational modifications (PTMs) on GFAP. Our findings reveal selective phosphorylation of GFAP-Ser13 in patients who died young, independently of the mutation they carried. AxD iPSC-astrocytes accumulated pSer13-GFAP in cytoplasmic aggregates within deep nuclear invaginations, resembling the hallmark Rosenthal fibers observed in vivo. Ser13 phosphorylation facilitated GFAP aggregation and was associated with increased GFAP proteolysis by caspase-6. Furthermore, caspase-6 was selectively expressed in young AxD patients, and correlated with the presence of cleaved GFAP. We reveal a novel PTM signature linking different GFAP mutations in infantile AxD.


Subject(s)
Alexander Disease/metabolism , Biomarkers/metabolism , Caspases/metabolism , Glial Fibrillary Acidic Protein/metabolism , Adult , Alexander Disease/diagnosis , Alexander Disease/genetics , Astrocytes/metabolism , Binding Sites/genetics , Brain/metabolism , Brain/pathology , Cell Line , Glial Fibrillary Acidic Protein/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Infant , Intermediate Filaments/metabolism , Mutation , Phosphorylation , Proteolysis , Severity of Illness Index
2.
J Biotechnol ; 241: 136-146, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-27845164

ABSTRACT

While CRISPR-based gene knock out in mammalian cells has proven to be very efficient, precise insertion of genetic elements via the cellular homology directed repair (HDR) pathway remains a rate-limiting step to seamless genome editing. Under the conditions described here, we achieved up to 56% targeted integration efficiency with up to a six-nucleotide insertion in HEK293 cells. In induced pluripotent stem cells (iPSCs), we achieved precise genome editing rates of up to 45% by co-delivering the Cas9 RNP and donor DNA. In addition, the use of a short double stranded DNA oligonucleotide with 3' overhangs allowed integration of a longer FLAG epitope tag along with a restriction site at rates of up to 50%. We propose a model that favors the design of donor DNAs with the change as close to the cleavage site as possible. For small changes such as SNPs or short insertions, asymmetric single stranded donor molecules with 30 base homology arms 3' to the insertion/repair cassette and greater than 40 bases of homology on the 5' end seems to be favored. For larger insertions such as an epitope tag, a dsDNA donor with protruding 3' homology arms of 30 bases is favored. In both cases, protecting the ends of the donor DNA with phosphorothioate modifications improves the editing efficiency.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Engineering/methods , Homologous Recombination/genetics , RNA, Guide, Kinetoplastida/genetics , Gene Knock-In Techniques , HEK293 Cells , Humans
3.
Biotechnol Lett ; 38(6): 919-29, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26892225

ABSTRACT

OBJECTIVES: To identify the best lipid nanoparticles for delivery of purified Cas9 protein and gRNA complexes (Cas9 RNPs) into mammalian cells and to establish the optimal conditions for transfection. RESULTS: Using a systematic approach, we screened 60 transfection reagents using six commonly-used mammalian cell lines and identified a novel transfection reagent (named Lipofectamine CRISPRMAX). Based on statistical analysis, the genome modification efficiencies in Lipofectamine CRISPRMAX-transfected cell lines were 40 or 15 % higher than those in Lipofectamine 3000 or RNAiMAX-transfected cell lines, respectively. Upon optimization of transfection conditions, we observed 85, 75 or 55 % genome editing efficiencies in HEK293FT cells, mouse ES cells, or human iPSCs, respectively. Furthermore, we were able to co-deliver donor DNA with Cas9 RNPs into a disrupted EmGFP stable cell line, resulting in the generation of up to 17 % EmGFP-positive cells. CONCLUSION: Lipofectamine CRISPRMAX was characterized as the best lipid nanoparticles for the delivery of Cas9 RNPs into a variety of mammalian cell lines, including mouse ES cells and iPSCs.


Subject(s)
Lipids , Transfection/methods , Animals , CRISPR-Cas Systems , Cell Line , Electroporation , Gene Editing/methods , Gene Targeting/methods , Green Fluorescent Proteins/genetics , Humans , Induced Pluripotent Stem Cells , Lipids/toxicity , Mice
4.
J Biotechnol ; 208: 44-53, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26003884

ABSTRACT

CRISPR-Cas9 systems provide a platform for high efficiency genome editing that are enabling innovative applications of mammalian cell engineering. However, the delivery of Cas9 and synthesis of guide RNA (gRNA) remain as steps that can limit overall efficiency and ease of use. Here we describe methods for rapid synthesis of gRNA and for delivery of Cas9 protein/gRNA ribonucleoprotein complexes (Cas9 RNPs) into a variety of mammalian cells through liposome-mediated transfection or electroporation. Using these methods, we report nuclease-mediated indel rates of up to 94% in Jurkat T cells and 87% in induced pluripotent stem cells (iPSC) for a single target. When we used this approach for multigene targeting in Jurkat cells we found that two-locus and three-locus indels were achieved in approximately 93% and 65% of the resulting isolated cell lines, respectively. Further, we found that the off-target cleavage rate is reduced using Cas9 protein when compared to plasmid DNA transfection. Taken together, we present a streamlined cell engineering workflow that enables gRNA design to analysis of edited cells in as little as four days and results in highly efficient genome modulation in hard-to-transfect cells. The reagent preparation and delivery to cells is amenable to high throughput, multiplexed genome-wide cell engineering.


Subject(s)
Cell Engineering/methods , Clustered Regularly Interspaced Short Palindromic Repeats , Endonucleases , Transfection , Endonucleases/biosynthesis , Endonucleases/genetics , Humans , Jurkat Cells
5.
Stem Cells Int ; 2012: 564612, 2012.
Article in English | MEDLINE | ID: mdl-22550511

ABSTRACT

The generation of induced pluripotent stem cells (iPSCs) from somatic cells has enabled the possibility of providing unprecedented access to patient-specific iPSC cells for drug screening, disease modeling, and cell therapy applications. However, a major obstacle to the use of iPSC for therapeutic applications is the potential of genomic modifications caused by insertion of viral transgenes in the cellular genome. A second concern is that reprogramming often requires the use of animal feeder layers and reagents that contain animal origin products, which hinder the generation of clinical-grade iPSCs. Here, we report the generation of iPSCs by an RNA Sendai virus vector that does not integrate into the cells genome, providing transgene-free iPSC line. In addition, reprogramming can be performed in feeder-free condition with StemPro hESC SFM medium and in xeno-free (XF) conditions. Generation of an integrant-free iPSCs generated in xeno-free media should facilitate the safe downstream applications of iPSC-based cell therapies.

6.
Gene ; 391(1-2): 209-22, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17331677

ABSTRACT

In a past article, our lab described the identification and characterization of a novel vegetative MADS-box gene from quaking aspen trees, Populus tremuloides MADS-box 5 (PTM5). PTM5 was shown to be a member of the SOC1/TM3 class of MADS-box genes with a seasonal expression pattern specific to developing vascular tissues including the vascular cambium, the precursor to all woody branches, stems, and roots. Since the proper function of MADS-box proteins is dependent on specific interactions with other regulatory proteins, we further examined PTM5 protein-protein interactions as a means to better understand its function. Through yeast two-hybrid analyses, it was demonstrated that, like other SOC1/TM3 class proteins, PTM5 is capable of interacting with itself as well as other MADS-box proteins from aspen. In addition, yeast two-hybrid library screening revealed that PTM5 interacts with two non-MADS proteins, an actin depolymerizing factor (PtADF) and a novel leucine-rich repeat protein (PtLRR). In situ RNA localization was used to verify the overlapping expression patterns of these genes, and transgenic studies showed that over-expression of PTM5 in aspen causes alterations in root vasculature and root biomass development consistent with the cell growth and expansion functions of related ADF and LRR genes. These results suggest that the interaction of vegetative MADS-box genes with specific protein cofactors is a key step in the mechanisms that control woody tissue development in trees.


Subject(s)
MADS Domain Proteins/genetics , Plant Proteins/genetics , Populus/genetics , Amino Acid Sequence , Blotting, Northern , Destrin/genetics , Destrin/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , In Situ Hybridization , Leucine-Rich Repeat Proteins , MADS Domain Proteins/metabolism , Molecular Sequence Data , Phylogeny , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Structures/genetics , Plant Structures/growth & development , Plants, Genetically Modified , Populus/growth & development , Protein Binding , Proteins/genetics , Proteins/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Sequence Homology, Amino Acid , Two-Hybrid System Techniques , Yeasts/genetics
7.
Gene ; 358: 1-16, 2005 Sep 26.
Article in English | MEDLINE | ID: mdl-16040208

ABSTRACT

One of the most important processes to the survival of a species is its ability to reproduce. In plants, SEPALLATA-class MADS-box genes have been found to control the development of the inner whorls of flowers. However, while much is known about floral development in herbaceous plants, similar systems in woody trees remain poorly understood. Populus tremuloides (trembling aspen) is a widespread North American tree having important economic value, and its floral development differs from that of well-studied species in that the flowers have only two whorls and are truly unisexual. Sequence based analyses indicate that PTM3 (Populus tremuloides MADS-box 3), and a duplicate gene PTM4, are related to the SEPALLATA1-and 2-class of MADS-box genes. Another gene, PTM6, is related to SEP3, and each of these genes has a counterpart in the poplar genomic database along with additional members of the A, B, C, D, and E-classes of MADS-box genes. PTM3/4 and 6 are expressed in all stages of male and female aspen floral development. However, PTM3/4 is also expressed in the terminal buds, young leaves, and young stems. In situ RNA localization identified PTM3/4 and 6 transcripts predominantly in the inner, sexual whorl, within developing ovules of female flowers and anther primordia of male flowers. Tree researchers often use heterologous systems to help study tree floral development due to the long juvenile periods found in most trees. We found that the participation of PTM3/4 in floral development is supported by transgenic experiments in both P. tremuloides and heterologous systems such as tobacco and Arabidopsis. However, phenotypic artifacts were observed in the heterologous systems. Together the results suggest a role for poplar SEP-class genes in reproductive viability.


Subject(s)
Flowers/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant/physiology , Plant Proteins/genetics , Populus/genetics , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers/metabolism , Gene Duplication , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Populus/metabolism , Reproduction/genetics , Sex Determination Processes , Nicotiana/genetics , Nicotiana/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...