Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Med Chem ; 10(7): 711-23, 2014.
Article in English | MEDLINE | ID: mdl-24286396

ABSTRACT

A series of 36 novel substituted quinazolinone derivatives were synthesized and evaluated for their antiinflammatory activity by carrageenan induced paw inflammation model. The ability of these compounds to inhibit cyclooxygenase (COX-1 and 2) enzyme has been determined in-vitro; the results indicated that quinazolinone derivatives were selective towards COX-2 rather than COX-1. Among the quinazolinone derivatives tested, compound 32 showed better inhibition against COX-2 when compared with Celecoxib. Pharmacophore modeling and 3D QSAR studies were performed in order to elucidate structural insights for the anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Design , Edema/drug therapy , Inflammation/drug therapy , Quantitative Structure-Activity Relationship , Quinazolinones/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carrageenan , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Edema/chemically induced , Inflammation/chemically induced , Models, Molecular , Molecular Structure , Quinazolinones/chemical synthesis , Quinazolinones/chemistry , Rats , Sheep
2.
Chem Res Toxicol ; 14(8): 1006-13, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11511174

ABSTRACT

A new HPLC gradient system was developed for (32)P-postlabeling analysis to identify and quantify hepatic tamoxifen-DNA adducts of rats and mice treated with tamoxifen. Four stereoisomers of alpha-(N(2)-deoxyguanosinyl)tamoxifen (dG(3')(P)-N(2)-TAM), alpha-(N(2)-deoxyguanosinyl)-N-desmethyltamoxifen (dG(3')(P)-N(2)-N-desmethyl-TAM), and alpha-(N(2)-deoxyguanosinyl)tamoxifen N-oxide (dG(3')(P)-N(2)-TAM N-oxide) were prepared by reacting either alpha-acetoxytamoxifen, alpha-acetoxy-N-desmethyltamoxifen or alpha-acetoxytamoxifen N-oxide with 2'-deoxyguanosine 3'-monophosphate, and used as standard markers for (32)P-postlabeling/HPLC analysis. Our HPLC gradient system can separate the above 12 nucleotide isomers as nine peaks; six peaks representing two each trans epimers (fr-1 and fr-2) of dG(3')(P)-N(2)-TAM, dG(3')(P)-N(2)-N-desmethyl-TAM and dG(3')(P)-N(2)-TAM N-oxide, and three peaks representing a mixture of two cis epimers (fr-3 and fr-4) of nucleotides. Tamoxifen was given to female F344 rats and DBA/2 mice by gavage at doses of 45 mg/kg/day and 120 mg/kg/day, respectively, for 7 days. Totally 15 and 17 tamoxifen-DNA adducts were detected in rats and mice, respectively; among them 13 adducts were observed in both rats and mice. trans-dG-N(2)-TAM (fr-2) and trans-dG(3')(P)-N(2)-N-desmethyl-TAM (fr-2) were two major adducts in both animals. Except for these two adducts, trans-dG-N(2)-TAM N-oxide (fr-2) was the third abundant adduct that accounted for 6.4% of the total adducts in mice, while this accounted for only 0.3% in rats. A trans-isomer (fr-1) and cis-isomers (fr-3 and -4) of dG(3')(P)-N(2)-TAM, dG(3')(P)-N(2)-N-desmethyl-TAM and dG(3')(P)-N(2)-TAM N-oxide were also detected as minor adducts in both animals except for cis-form of dG-N(2)-TAM N-oxide in rats. Although the administered dose for rats was 2.7-fold less than that for mice, the total adduct level of rats (216 adducts/10(8) nucleotides) were 3.8-fold higher than mice (56.2 adducts/10(8) nucleotides). Thus, these three types of tamoxifen adducts accounted for 95.0 and 92.5% of the total DNA adducts of the rats and mice, respectively. The formation of tamoxifen adducts primarily resulted from alpha-hydroxylation of tamoxifen.


Subject(s)
Carcinogens/chemistry , DNA Adducts/analysis , Tamoxifen/chemistry , Animals , Carcinogens/analysis , Chromatography, High Pressure Liquid/methods , Hydroxylation , Liver/pathology , Mice , Phosphorus Radioisotopes , Rats , Rats, Inbred F344 , Sensitivity and Specificity , Tamoxifen/analysis
3.
Cancer Res ; 61(10): 3925-31, 2001 May 15.
Article in English | MEDLINE | ID: mdl-11358807

ABSTRACT

An increased incidence of endometrial cancer has been reported in breast cancer patients taking tamoxifen (TAM) and in healthy women participating in the TAM chemoprevention trials. Because TAM-DNA adducts are mutagenic and detected in the endometrium of women treated with TAM, TAM adducts are suspected to initiate the development of endometrial cancer. Treatment with TAM has been known to promote hepatocarcinoma in rats, but toremifene (TOR), a chlorinated TAM analogue, did not. TAM adducts are primarily formed via sulfonation of the alpha-hydroxylated TAM metabolites. To explore the mechanism of the lower genotoxicity of TOR, the formation of DNA adducts induced by TOR metabolites was measured using (32)P-postlabeling/ high-performance liquid chromatography analysis and compared with that of TAM metabolites. When alpha-hydroxytoremifene was incubated with DNA, 3'-phosphoadenosine 5'-phosphosulfate, and either rat or human hydroxysteroid sulfotransferase, the formation of DNA adducts was two orders of magnitude lower than that of alpha-hydroxytamoxifen. alpha-hydroxytoremifene was a poor substrate for rat and human hydroxysteroid sulfotransferases. In addition, the reactivity of alpha-acetoxytoremifene, a model activated form of TOR, with DNA was much lower than that of alpha-acetoxytamoxifen. Thus, TOR is likely to have lower genotoxicity than TAM. TOR may be a safer alternative by avoiding the development of endometrial cancer.


Subject(s)
Antineoplastic Agents, Hormonal/toxicity , DNA/drug effects , Tamoxifen/toxicity , Toremifene/toxicity , Animals , Antineoplastic Agents, Hormonal/metabolism , Biotransformation , Cattle , DNA/metabolism , DNA Adducts/biosynthesis , Deoxyguanine Nucleotides/metabolism , Rats , Structure-Activity Relationship , Sulfotransferases/metabolism , Sulfur/metabolism , Toremifene/analogs & derivatives , Toremifene/metabolism
4.
Carcinogenesis ; 21(9): 1737-44, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10964106

ABSTRACT

Tamoxifen-DNA adducts detected in the liver of mice treated with tamoxifen have not yet been identified. In the present study a new type of tamoxifen-DNA adduct, four stereoisomers of alpha-(N:(2)-deoxyguanosinyl)tamoxifen N:-oxide 3'-monophosphate (dG(3'P)-N:(2)-TAM N:-oxide) were prepared as standard DNA adducts by reacting 2'-deoxyguanosine 3'-monophosphate with trans-alpha-acetoxytamoxifen N:-oxide in addition to four stereoisomers of alpha-(N:(2)-deoxyguano- sinyl)tamoxifen 3'-monophosphate (dG(3'P)-N:(2)-TAM) that was reported previously. Liquid chromatography-electrospray ionization-mass spectrometry of the reaction products gave the most abundant ion at m/z 731 ([M - H](-)), which corresponded to dG(3'P)-N:(2)-TAM N:-oxide. The modified products digested by alkaline phosphatase corresponded to the isomers of dG-N:(2)-TAM N:-oxide whose structures were identified previously by mass spectrometry and nuclear magnetic resonance. Using these standard markers, we analyzed the hepatic DNA adducts of female DBA/2 mice treated with tamoxifen at a dosage of 120 mg/kg/day for 7 days by (32)P-post-labeling coupled with an HPLC/radioactive detector. Mixtures of eight isomers of dG(3'P)-N:(2)-TAM and dG(3'P)-N:(2)-TAM N-oxide were separated into six peaks, since each of the cis epimers were not separated under the present HPLC conditions. Nine adducts were detected in all liver samples of mice. An epimer of trans-dG(3'P)-N:(2)-TAM was detected as the principal DNA adduct at a level of 29.0 adducts/10(8) nucleotides, which accounted for 53.3% of the total tamoxifen-DNA adducts. Lesser amounts of cis-dG(3'P)-N:(2)-TAM (2.8%) were also observed. An epimer of the trans-dG(3'P)-N:(2)-TAM N:-oxide (3.9 adducts/10(8) nucleotides) was detected as the third biggest adduct (7.2% of the total). The cis-dG(3'P)-N:(2)-TAM N:-oxide (0.4 adducts/10(8) nucleotides) accounted for 0.7% of the total. Thus, dG(3'P)-N:(2)-TAM and dG(3'P)-N:(2)-TAM N:-oxide were identified in tamoxifen-treated mouse liver.


Subject(s)
DNA Adducts/analysis , DNA/metabolism , Liver/metabolism , Tamoxifen/analogs & derivatives , Tamoxifen/analysis , Tamoxifen/metabolism , Animals , Chromatography, High Pressure Liquid , DNA/drug effects , Deoxyguanine Nucleotides/chemistry , Female , Isomerism , Liver/chemistry , Mass Spectrometry , Mice , Mice, Inbred DBA , Tamoxifen/chemistry
5.
Chem Res Toxicol ; 13(8): 761-9, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10956064

ABSTRACT

Treatment with tamoxifen increased the risk of endometrial cancers in breast cancer patients and women participating in the chemoprevention study. In our laboratory, tamoxifen-DNA adducts, including alpha-(N(2)-deoxyguanosinyl)tamoxifen (dG-N(2)-TAM), were detected in the endometrium of women taking tamoxifen [Shibutani, S., et al. (1999) Chem. Res. Toxicol. 12, 646-653]. On the basis of recent animal studies, deoxyguanosinyl-N-desmethyltamoxifen (dG-N-desmethylTAM) adducts are also suspected to be formed in the liver. In the study presented here, we synthesized alpha-acetoxy-N-desmethyltamoxifen as a model activated metabolite of N-desmethyltamoxifen. The overall yield of alpha-acetoxy-N-desmethyltamoxifen from alpha-hydroxytamoxifen was approximately 42%. alpha-Acetoxy-N-desmethyltamoxifen was highly reactive to 2'-deoxyguanosine, as was similarly observed for tamoxifen alpha-sulfate. The two reaction products were identified as a mixture of epimers of the trans form or cis form of alpha-(N(2)-deoxyguanosinyl)-N-desmethyltamoxifen (dG-N(2)-N-desmethylTAM) by mass and proton magnetic resonance spectroscopy. In addition, the trans and cis forms of dG 3'-monophosphate-N(2)-N-desmethylTAM were prepared as standard markers for (32)P-postlabeling/HPLC analysis. Using this technique, dG-N(2)-N-desmethylTAM adducts were detected in calf thymus DNA reacted with alpha-acetoxy-N-desmethyltamoxifen.


Subject(s)
DNA Adducts/metabolism , Estrogen Antagonists/metabolism , Tamoxifen/analogs & derivatives , Tamoxifen/metabolism , Animals , Cattle , Chromatography, High Pressure Liquid , DNA Adducts/analysis , Magnetic Resonance Spectroscopy , Mass Spectrometry , Protons , Tamoxifen/analysis
6.
Carcinogenesis ; 21(8): 1461-7, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10910945

ABSTRACT

The risk of developing endometrial cancer increases significantly for women treated with tamoxifen (TAM); the present study was designed to investigate the mechanism of this carcinogenic effect. Endometrial tissue was obtained from 16 women treated for varying lengths of time with TAM and from 15 untreated control subjects. DNA was analyzed with a (32)P-post-labeling/HPLC on-line monitoring assay capable of detecting 2.5 adducts/10(10) nucleotides. Using this sensitive and specific assay, TAM-DNA adducts were detected in eight women. The major adducts found were trans and cis epimers of alpha-(N(2)-deoxyguanosinyl) tamoxifen (dG-N(2)-TAM); levels ranged between 0.2-12 and 1.6-8.3 adducts/10(8) nucleotides, respectively. There was marked inter-individual variation in the relative amounts of cis and trans adducts present. Low levels (0.74-1.1 adducts/10(8) nucleotides) of trans and cis forms of dG-N(2)-TAM N-oxide were detected in one patient. DNA adducts derived from 4-hydroxytamoxifen quinone methide were not observed. We conclude from this analysis that trans and cis dG-N(2)-TAMs accumulate in significant amounts in the endometrium of many, but not all, women treated with this drug. The level of adducts found, coupled with the previous demonstration of their mutagenicity [Cancer Res., 59, 2091, 1999], suggest that a genotoxic mechanism may be responsible for TAM-induced endometrial cancer.


Subject(s)
Carcinogens/metabolism , DNA Adducts/analysis , Endometrium/metabolism , Estrogen Antagonists/metabolism , Tamoxifen/metabolism , Adult , Aged , Carcinogens/adverse effects , Chromatography, High Pressure Liquid , DNA/drug effects , DNA/metabolism , Estrogen Antagonists/adverse effects , Estrogen Antagonists/therapeutic use , Female , Humans , Middle Aged , Phosphorus Radioisotopes , Sensitivity and Specificity , Stereoisomerism , Tamoxifen/adverse effects , Tamoxifen/analogs & derivatives , Tamoxifen/analysis , Tamoxifen/therapeutic use
7.
Chem Res Toxicol ; 12(11): 1083-9, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10563834

ABSTRACT

DNA adduct formation is assumed to be a major carcinogenic event, leading to the development of endometrial cancer in breast cancer patients taking tamoxifen and healthy women enrolled in a tamoxifen chemopreventive trial. To determine whether DNA adducts were formed by tamoxifen, trans- and cis-alpha-acetoxytamoxifen N-oxides were synthesized as model-activated forms via major tamoxifen metabolites, tamoxifen N-oxide and alpha-hydroxytamoxifen N-oxide. When alpha-acetoxytamoxifen N-oxide was reacted with human DNA, at least three DNA adducts were detected by (32)P-postlabeling coupled with HPLC. The total amount of DNA adducts formed by trans-alpha-hydroxytamoxifen N-oxide was 1.5-fold higher than that formed by the cis form. Both trans- and cis-alpha-acetoxytamoxifen N-oxide reacted with 2'-deoxyguanosine, resulting in the formation of three adducts (fr-1, fr-2-1, and fr-2-2). These products were studied using mass spectroscopy and proton magnetic resonance spectroscopy. fr-1 was identified as a mixture of the epimers of trans-alpha-(N(2)-deoxyguanosinyl)tamoxifen N-oxide. fr-2-1 and fr-2-2 were determined to be epimers of cis-alpha-(N(2)-deoxyguanosinyl)tamoxifen N-oxide.


Subject(s)
Antineoplastic Agents, Hormonal/chemistry , DNA Adducts/chemistry , Tamoxifen/analogs & derivatives , Tamoxifen/chemistry , Acetylation , Chromatography, High Pressure Liquid , Spectrometry, Mass, Fast Atom Bombardment , Sulfates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...