Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 195(2): 1136-1157, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36331692

ABSTRACT

Plants, rich in phytocompounds, have been in usage since time immemorial for treating various diseases, namely, cancer. One such plant species, Allium ascalonicum (Shallot) belonging to Amaryllidaceae family is being studied here for its anti-carcinogenic properties against breast cancer. GC-MS characterization of A. ascalonicum exhibited 48 phytocompounds containing five peak phytocompounds and 13 phytocompounds with anti-carcinogenic properties. These 13 anti-carcinogenic phytocompounds were docked with three hormonal receptors involved in breast cancer malignancy, namely, ERα, PR, and human EGFR with tamoxifen as standard for in silico analysis. The results exhibited three phytocompounds that had better binding scores compared to that of the standard drug, tamoxifen. Lyophilized powder of aqueous A. ascalonicum extract, also referred as ASE, was used for in vitro approaches. Antioxidant study using DPPH assay revealed that the highest percentage of FRSA in ASE, nearly 51%, was observed at 50 µg/ml concentration. Cytotoxicity study on MCF-7 cell line using MTT assay demonstrated IC50 value at 1400 µg/ml and anti-proliferative study using Trypan blue assay for the determination of percentage viability of MCF-7 cells at IC50 concentration was observed to be 49%. Anti-mitotic activity using Vigna radiata seed germination assay revealed clear morphological differences in a dose-dependent manner between the seeds grown at various concentrations of ASE with nearly 56.5% growth inhibition observed at 1500 µg/ml concentration. Hence, this research work proves that Allium ascalonicum has very good anti-carcinogenic properties and this can be confirmed further through in vivo animal model studies and it can also be formulated as a promising drug to treat breast cancer. GC-MS characterization of Allium ascalonicum demonstrated the presence of five peak compounds and thirteen anti-carcinogenic compounds. The thirteen anti-carcinogenic compounds were docked with three target proteins (in silico analysis) involved in breast cancer malignancy and identified the presence of three potential phytocompounds that can be used for treating breast cancer. In vitro approaches also confirmed the presence of anti-carcinogenic properties such as antioxidative potential, cytotoxic, anti-proliferative, and anti-mitotic effects. Hence, Allium ascalonicum can be taken further to in vivo studies so that it can be formulated to treat breast cancer.


Subject(s)
Allium , Breast Neoplasms , Shallots , Animals , Humans , Female , Allium/chemistry , Breast Neoplasms/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Carcinogens , Early Detection of Cancer , Antioxidants/pharmacology , Antioxidants/chemistry , Carcinogenesis , Tamoxifen
2.
Appl Biochem Biotechnol ; 194(10): 4836-4851, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35666379

ABSTRACT

Globally, breast cancer is one of the leading invasive cancers in women. Moreover, the use of chemotherapeutic drugs for treating cancer produces toxic side effects and has even led to drug resistance. This research paper focuses on targeting three heat shock proteins belonging to 70 kDa subfamily (HSP70s), predominantly, Mortalin, Binding Immunoglobulin Protein (BiP), and Stress Inducible HSP70 (Stress Inducible Heat Shock Protein 70) involved in breast cancer malignancy using different phytocompounds of onion. Phytocompounds of onion (ligands) obtained from different literature sources and the conventional drug, Tamoxifen (standard ligand), used for treating breast cancer are docked against three HSP70s (target proteins) through molecular docking. Molecular docking helps to determine protein-ligand interactions with minimum binding affinity. A comparative analysis revealed that fourteen phytocompounds of onion have lesser binding affinity and formed more stable complexes with the target proteins compared to that of the conventional drug. This evidence can be used and confirmed further through in vitro (cell culture) and in vivo (animal models) studies, and then, these phytocompounds can be modulated efficiently as potential therapeutics for treating breast cancer with less or nearly no side effects. In Silico work represented here targets three heat shock proteins belonging to 70 kDa subfamily (HSP70s)-Mortalin, Binding Immunoglobulin Protein (BiP), and Stress Inducible HSP70 involved in breast cancer malignancy using different phytocompounds of onion to identify potential phytocompounds that can treat breast cancer with nearly no side effects.


Subject(s)
Heat-Shock Proteins , Neoplasms , Animals , Female , HSP70 Heat-Shock Proteins/metabolism , Humans , Ligands , Molecular Docking Simulation , Onions/metabolism , Tamoxifen
SELECTION OF CITATIONS
SEARCH DETAIL
...